Rodrigo Guillermo, Prakash Satya, Shen Shensi, Majer Eszter, Daròs José-Antonio, Jaramillo Alfonso
Institute of Systems and Synthetic Biology, Université d'Évry Val d'Essonne-CNRS, F-91000 Évry, France.
Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, 46022 Valencia, Spain.
Nucleic Acids Res. 2017 Sep 19;45(16):9797-9808. doi: 10.1093/nar/gkx698.
Synthetic gene circuits allow the behavior of living cells to be reprogrammed, and non-coding small RNAs (sRNAs) are increasingly being used as programmable regulators of gene expression. However, sRNAs (natural or synthetic) are generally used to regulate single target genes, while complex dynamic behaviors would require networks of sRNAs regulating each other. Here, we report a strategy for implementing such networks that exploits hybridization reactions carried out exclusively by multifaceted sRNAs that are both targets of and triggers for other sRNAs. These networks are ultimately coupled to the control of gene expression. We relied on a thermodynamic model of the different stable conformational states underlying this system at the nucleotide level. To test our model, we designed five different RNA hybridization networks with a linear architecture, and we implemented them in Escherichia coli. We validated the network architecture at the molecular level by native polyacrylamide gel electrophoresis, as well as the network function at the bacterial population and single-cell levels with a fluorescent reporter. Our results suggest that it is possible to engineer complex cellular programs based on RNA from first principles. Because these networks are mainly based on physical interactions, our designs could be expanded to other organisms as portable regulatory resources or to implement biological computations.
合成基因回路能够对活细胞的行为进行重新编程,非编码小RNA(sRNA)越来越多地被用作基因表达的可编程调控因子。然而,sRNA(天然的或合成的)通常用于调控单个靶基因,而复杂的动态行为则需要sRNA相互调控的网络。在此,我们报告一种实现此类网络的策略,该策略利用多面sRNA专门进行的杂交反应,这些sRNA既是其他sRNA的靶标又是其触发因素。这些网络最终与基因表达的控制相耦合。我们依赖于该系统在核苷酸水平上不同稳定构象状态的热力学模型。为了测试我们的模型,我们设计了五个具有线性结构的不同RNA杂交网络,并在大肠杆菌中实现了它们。我们通过天然聚丙烯酰胺凝胶电泳在分子水平上验证了网络结构,并使用荧光报告基因在细菌群体和单细胞水平上验证了网络功能。我们的结果表明,从第一原理出发基于RNA设计复杂的细胞程序是可能的。由于这些网络主要基于物理相互作用,我们的设计可以扩展到其他生物体,作为可移植的调控资源或用于实现生物计算。