Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany.
Algebraic Engineering, Institute of Embedded Systems, Hamburg University of Technology, 21073 Hamburg, Germany.
ACS Synth Biol. 2023 Sep 15;12(9):2524-2535. doi: 10.1021/acssynbio.2c00614. Epub 2023 Aug 18.
Predictable and controllable tuning of genetic circuits to regulate gene expression, including modulation of existing circuits or constructs without the need for redesign or rebuilding, is a persistent challenge in synthetic biology. Here, we propose rationally designed new small RNAs (sRNAs) that dynamically modulate gene expression of genetic circuits with a broad range (high, medium, and low) of repression. We designed multiple multilayer genetic circuits in which the variable effector element is a transcription factor (TF) controlling downstream the production of a reporter protein. The sRNAs target TFs instead of a reporter gene, and harnessing the intrinsic RNA-interference pathway in allowed for a wide range of expression modulation of the reporter protein, including the most difficult to achieve dynamic switch to an OFF state. The synthetic sRNAs are expressed independently of the circuit(s), thus allowing for repression without modifying the circuit itself. Our work provides a frame for achieving independent modulation of gene expression and dynamic and modular control of the multilayer genetic circuits by only including an independent control circuit expressing synthetic sRNAs, without altering the structure of existing genetic circuits.
可预测和可控制的基因电路调节,以调节基因表达,包括调节现有电路或构建体,而无需重新设计或重建,这是合成生物学中的一个持续挑战。在这里,我们提出了合理设计的新的小 RNA(sRNA),可以动态调节具有广泛(高、中、低)抑制范围的基因电路的基因表达。我们设计了多个多层基因电路,其中可变效应元件是一个转录因子(TF),控制下游报告蛋白的产生。sRNA 靶向 TF 而不是报告基因,利用内在的 RNA 干扰途径,允许报告蛋白的表达进行广泛的调节,包括最难以实现的动态关闭状态转换。合成 sRNA 独立于电路表达,因此可以在不修改电路本身的情况下进行抑制。我们的工作为通过仅包括表达合成 sRNA 的独立控制电路,实现基因表达的独立调节以及多层基因电路的动态和模块化控制提供了一个框架,而无需改变现有基因电路的结构。