Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, NY, USA.
Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, NY, USA.
Neuroimage. 2018 Nov 15;182:360-369. doi: 10.1016/j.neuroimage.2017.09.030. Epub 2017 Sep 19.
Biophysical modeling of macroscopic diffusion-weighted MRI signal in terms of microscopic cellular parameters holds the promise of quantifying the integrity of white matter. Unfortunately, even fairly simple multi-compartment models of proton diffusion in the white matter do not provide a unique, biophysically plausible solution. Here we report a nontrivial diffusion MRI signal dependence on echo time (T) in human white matter in vivo. We demonstrate that such T dependence originates from compartment-specific T values and that it is a promising "orthogonal measure" able to break the degeneracy in parameter estimation, and to yield important relaxation metrics robustly. We thereby enable the precise estimation of the intra- and extra-axonal water T relaxation times, which is precluded by a limited signal-to-noise ratio when using multi-echo relaxometry alone.
从微观细胞参数方面对宏观扩散加权磁共振成像信号进行生物物理建模有望实现对大脑白质完整性的定量评估。不幸的是,即使是相对简单的大脑白质质子扩散多室模型也无法提供唯一的、合理的生物物理解决方案。本文报道了活体人类大脑白质中与回波时间(T)相关的非平凡扩散磁共振成像信号。我们证明了这种 T 依赖性来源于特定隔室的 T 值,并且它是一种很有前途的“正交测量”方法,可以打破参数估计中的简并性,并可靠地产生重要的弛豫度量。因此,我们能够精确估计轴内和轴外水分子的 T2 弛豫时间,这是单独使用多回波弛豫测量法由于信噪比有限而无法实现的。