LPCV, CNRS, CEA, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France and.
Plant Genome and Systems Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany.
Plant Physiol. 2017 Nov;175(3):1203-1219. doi: 10.1104/pp.17.00982. Epub 2017 Sep 21.
Plants possessing dysfunctional plastids due to defects in pigment biosynthesis or translation are known to repress photosynthesis-associated nuclear genes via retrograde signals from the disturbed organelles toward the nucleus. These signals are thought to be essential for proper biogenesis and function of the plastid. Mutants lacking plastid-encoded RNA polymerase-associated proteins (PAPs) display a genetic arrest in eoplast-chloroplast transition leading to an albino phenotype in the light. Retrograde signaling in these mutants, therefore, could be expected to be similar as under conditions inducing plastid dysfunction. To answer this question, we performed plastome- and genomewide array analyses in the - mutant of Arabidopsis (). In parallel, we determined the potential overlap with light-regulated expression networks. To this end, we performed a comparative expression profiling approach using light- and dark-grown wild-type plants as relative control for the expression profiles obtained from light-grown - mutants. Our data indicate a specific impact of retrograde signals on metabolism-related genes in - mutants reflecting the starvation situation of the albino seedlings. In contrast, light regulation of PhANGs and other nuclear gene groups appears to be fully functional in this mutant, indicating that a block in chloroplast biogenesis per se does not repress expression of them as suggested by earlier studies. Only genes for light harvesting complex proteins displayed a significant repression indicating an exclusive retrograde impact on this gene family. Our results indicate that chloroplasts and arrested plastids each emit specific signals that control different target gene modules both in positive and negative manner.
由于色素生物合成或翻译缺陷而导致质体功能失调的植物,已知通过从受损细胞器向核逆行信号来抑制与光合作用相关的核基因。这些信号被认为对于质体的正确生物发生和功能是必需的。缺乏质体编码 RNA 聚合酶相关蛋白(PAP)的突变体在 eoplast-chloroplast 过渡中表现出遗传停滞,导致在光下出现白化表型。因此,这些突变体中的逆行信号应该与诱导质体功能障碍的条件相似。为了回答这个问题,我们在拟南芥()的 - 突变体中进行了质体基因组和全基因组阵列分析。同时,我们确定了与光调控表达网络的潜在重叠。为此,我们使用光和黑暗生长的野生型植物作为光生长 - 突变体获得的表达谱的相对对照,进行了比较表达谱分析。我们的数据表明,逆行信号对 - 突变体中与代谢相关的基因有特定的影响,反映了白化幼苗的饥饿状态。相比之下,光对 PhANGs 和其他核基因群的调节在这个突变体中似乎是完全功能的,这表明正如早期研究表明的那样,叶绿体生物发生的阻断本身不会抑制它们的表达。只有光捕获复合物蛋白的基因显示出显著的抑制,表明仅对这个基因家族有逆行影响。我们的结果表明,叶绿体和停滞的质体各自发出特定的信号,以正向和负向方式控制不同的靶基因模块。