Computer Science Department, University of Sherbrooke Sherbrooke, QC, Canada ; MRC Cognition and Brain Sciences Unit, University of Cambridge Cambridge, UK.
Henry H. Wheeler, Jr. Brain Imaging Center, University of California Berkeley, CA, USA.
Front Neuroinform. 2014 Feb 21;8:8. doi: 10.3389/fninf.2014.00008. eCollection 2014.
Diffusion Imaging in Python (Dipy) is a free and open source software project for the analysis of data from diffusion magnetic resonance imaging (dMRI) experiments. dMRI is an application of MRI that can be used to measure structural features of brain white matter. Many methods have been developed to use dMRI data to model the local configuration of white matter nerve fiber bundles and infer the trajectory of bundles connecting different parts of the brain. Dipy gathers implementations of many different methods in dMRI, including: diffusion signal pre-processing; reconstruction of diffusion distributions in individual voxels; fiber tractography and fiber track post-processing, analysis and visualization. Dipy aims to provide transparent implementations for all the different steps of dMRI analysis with a uniform programming interface. We have implemented classical signal reconstruction techniques, such as the diffusion tensor model and deterministic fiber tractography. In addition, cutting edge novel reconstruction techniques are implemented, such as constrained spherical deconvolution and diffusion spectrum imaging (DSI) with deconvolution, as well as methods for probabilistic tracking and original methods for tractography clustering. Many additional utility functions are provided to calculate various statistics, informative visualizations, as well as file-handling routines to assist in the development and use of novel techniques. In contrast to many other scientific software projects, Dipy is not being developed by a single research group. Rather, it is an open project that encourages contributions from any scientist/developer through GitHub and open discussions on the project mailing list. Consequently, Dipy today has an international team of contributors, spanning seven different academic institutions in five countries and three continents, which is still growing.
Python 中的扩散成像(Dipy)是一个用于分析扩散磁共振成像(dMRI)实验数据的免费开源软件项目。dMRI 是 MRI 的一种应用,可以用于测量脑白质的结构特征。已经开发了许多方法来使用 dMRI 数据来模拟白质神经纤维束的局部配置,并推断连接大脑不同部位的束的轨迹。Dipy 汇集了 dMRI 中的许多不同方法的实现,包括:扩散信号预处理;个体体素中扩散分布的重建;纤维追踪和纤维轨迹后处理、分析和可视化。Dipy 旨在提供 dMRI 分析的所有不同步骤的透明实现,并具有统一的编程接口。我们已经实现了经典的信号重建技术,例如扩散张量模型和确定性纤维追踪。此外,还实现了前沿的新颖重建技术,例如约束球分解和具有解卷积的扩散光谱成像(DSI),以及用于概率跟踪和原始轨迹聚类方法。提供了许多额外的实用函数来计算各种统计信息、信息丰富的可视化以及文件处理例程,以协助开发和使用新技术。与许多其他科学软件项目不同,Dipy 不是由单个研究小组开发的。相反,它是一个开放的项目,通过 GitHub 鼓励任何科学家/开发人员的贡献,并在项目邮件列表上进行公开讨论。因此,今天的 Dipy 拥有一个由来自五个国家和三个大洲的七个不同学术机构的贡献者组成的国际团队,而且还在不断壮大。