Iadevaia Giulia, Stross Alexander E, Neumann Anja, Hunter Christopher A
Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK . Email:
Department of Chemistry , University of Sheffield , Sheffield S3 7HF , UK.
Chem Sci. 2016 Mar 1;7(3):1760-1767. doi: 10.1039/c5sc04467g. Epub 2016 Jan 7.
The formation of well-defined supramolecular assemblies involves competition between intermolecular and intramolecular interactions, which is quantified by effective molarity. Formation of a duplex between two oligomers equipped with recognition sites displayed along a non-interacting backbone requires that once one intermolecular interaction has been formed, all subsequent interactions take place in an intramolecular sense. The efficiency of this process is governed by the geometric complementarity and conformational flexibility of the backbone linking the recognition sites. Here we report a series of phosphine oxide H-bond acceptor AA 2-mers and phenol H-bond donor DD 2-mers, where the two recognition sites are connected by isomeric backbone modules that vary in geometry and flexibility. All AA and DD combinations form stable AA·DD duplexes, where two cooperative H-bonds lead to an increase in stability of an order of magnitude compared with the corresponding A·D complexes that can only form one H-bond. For all six possible backbone combinations, the effective molarity for duplex formation is approximately constant (7-20 mM). Thus strict complementarity and high degrees of preorganisation are not required for efficient supramolecular assembly. Provided there is some flexibility, quite different backbone modules can be used interchangeably to construct stable H-bonded duplexes.
形成明确的超分子组装体涉及分子间相互作用和分子内相互作用之间的竞争,这可以通过有效摩尔浓度来量化。在沿着非相互作用主链展示有识别位点的两个寡聚物之间形成双链体,要求一旦形成一个分子间相互作用,所有后续相互作用都以分子内的方式发生。这个过程的效率由连接识别位点的主链的几何互补性和构象灵活性决定。在此,我们报道了一系列氧化膦氢键受体AA二聚体和苯酚氢键供体DD二聚体,其中两个识别位点通过几何形状和灵活性不同的异构主链模块相连。所有AA和DD组合都形成稳定的AA·DD双链体,与只能形成一个氢键的相应A·D复合物相比,两个协同氢键导致稳定性提高一个数量级。对于所有六种可能的主链组合,双链体形成的有效摩尔浓度大致恒定(7 - 20 mM)。因此,高效的超分子组装不需要严格的互补性和高度的预组织。只要有一定的灵活性,相当不同的主链模块可以互换使用来构建稳定的氢键双链体。