Suppr超能文献

利用深度学习检测动脉自旋标记法中的高灌注

Detection of Hyperperfusion on Arterial Spin Labeling using Deep Learning.

作者信息

Vincent Nicholas, Stier Noah, Yu Songlin, Liebeskind David S, Wang Danny Jj, Scalzo Fabien

机构信息

Neurovascular Imaging Research Core, Department of Neurology, University of California, Los Angeles (UCLA).

出版信息

Proceedings (IEEE Int Conf Bioinformatics Biomed). 2015 Nov;2015:1322-1327. doi: 10.1109/BIBM.2015.7359870. Epub 2015 Dec 17.

Abstract

Hyperperfusion detected on arterial spin labeling (ASL) images acquired after acute stroke onset has been shown to correlate with development of subsequent intracerebral hemorrhage. We present in this study a quantitative hyperperfusion detection model that can provide an objective decision support for the interpretation of ASL cerebral blood flow (CBF) maps and rapidly delineate hyperperfusion regions. The detection problem is solved using Deep Learning such that the model relates ASL image patches to the corresponding label (normal or hyperperfused). Our method takes into account the regional intensity values of contralateral hemisphere during the labeling of a pixel. Each input vector is associated to a label corresponding to the presence of hyperperfusion that was manually established by a clinical researcher in Neurology. When compared to the manually established hyperperfusion, the predicted maps reached an accuracy of 97.45 ± 2.49% after crossvalidation. Pattern recognition based on deep learning can provide an accurate and objective measure of hyperperfusion on ASL CBF images and could therefore improve the detection of hemorrhagic transformation in acute stroke patients.

摘要

急性卒中发作后通过动脉自旋标记(ASL)图像检测到的高灌注已被证明与随后发生的脑出血相关。在本研究中,我们提出了一种定量高灌注检测模型,该模型可为ASL脑血流量(CBF)图的解读提供客观的决策支持,并能快速勾勒出高灌注区域。利用深度学习解决检测问题,使模型将ASL图像块与相应标签(正常或高灌注)相关联。我们的方法在标记像素时考虑了对侧半球的区域强度值。每个输入向量都与一个由神经科临床研究人员手动确定的与高灌注存在对应的标签相关联。与手动确定的高灌注相比,经过交叉验证后,预测图的准确率达到了97.45±2.49%。基于深度学习的模式识别可以为ASL CBF图像上的高灌注提供准确客观的测量,因此可以改善急性卒中患者出血性转化的检测。

相似文献

1
Detection of Hyperperfusion on Arterial Spin Labeling using Deep Learning.利用深度学习检测动脉自旋标记法中的高灌注
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2015 Nov;2015:1322-1327. doi: 10.1109/BIBM.2015.7359870. Epub 2015 Dec 17.

引用本文的文献

2
Detection of Intracranial Hypertension using Deep Learning.利用深度学习检测颅内高压
Proc IAPR Int Conf Pattern Recogn. 2016 Dec;2016:2491-2496. doi: 10.1109/ICPR.2016.7900010. Epub 2017 Apr 24.

本文引用的文献

1
Data science of stroke imaging and enlightenment of the penumbra.卒中影像数据科学与半暗带启示
Front Neurol. 2015 Mar 5;6:8. doi: 10.3389/fneur.2015.00008. eCollection 2015.
3
Deep learning in neural networks: an overview.神经网络中的深度学习:综述。
Neural Netw. 2015 Jan;61:85-117. doi: 10.1016/j.neunet.2014.09.003. Epub 2014 Oct 13.
6
Regional prediction of tissue fate in acute ischemic stroke.急性缺血性脑卒中组织命运的区域性预测。
Ann Biomed Eng. 2012 Oct;40(10):2177-87. doi: 10.1007/s10439-012-0591-7. Epub 2012 May 17.
7
3D convolutional neural networks for human action recognition.三维卷积神经网络的人体动作识别。
IEEE Trans Pattern Anal Mach Intell. 2013 Jan;35(1):221-31. doi: 10.1109/TPAMI.2012.59.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验