Suppr超能文献

利用深度学习检测颅内高压

Detection of Intracranial Hypertension using Deep Learning.

作者信息

Quachtran Benjamin, Hamilton Robert, Scalzo Fabien

机构信息

Department of Computer Science and Neurology, University of California, Los Angeles (UCLA).

Neural Analytics, Inc. Los Angeles, CA.

出版信息

Proc IAPR Int Conf Pattern Recogn. 2016 Dec;2016:2491-2496. doi: 10.1109/ICPR.2016.7900010. Epub 2017 Apr 24.

Abstract

Intracranial Hypertension, a disorder characterized by elevated pressure in the brain, is typically monitored in neurointensive care and diagnosed only after elevation has occurred. This reaction-based method of treatment leaves patients at higher risk of additional complications in case of misdetection. The detection of intracranial hypertension has been the subject of many recent studies in an attempt to accurately characterize the causes of hypertension, specifically examining waveform morphology. We investigate the use of Deep Learning, a hierarchical form of machine learning, to model the relationship between hypertension and waveform morphology, giving us the ability to accurately detect presence hypertension. Data from 60 patients, showing intracranial pressure levels over a half hour time span, was used to evaluate the model. We divided each patient's recording into average normalized beats over 30 sec segments, assigning each beat a label of high (i.e. greater than 15 mmHg) or low intracranial pressure. The model was tested to predict the presence of elevated intracranial pressure. The algorithm was found to be 92.05± 2.25% accurate in detecting intracranial hypertension on our dataset.

摘要

颅内高压是一种以脑内压力升高为特征的疾病,通常在神经重症监护中进行监测,并且只有在压力升高后才会被诊断出来。这种基于反应的治疗方法在检测失误的情况下会使患者面临出现更多并发症的更高风险。颅内高压的检测一直是近期许多研究的主题,旨在准确描述高血压的成因,特别是检查波形形态。我们研究了使用深度学习(一种分层形式的机器学习)来对高血压与波形形态之间的关系进行建模,使我们能够准确检测高血压的存在。来自60名患者的数据显示了半小时时间跨度内的颅内压水平,用于评估该模型。我们将每位患者的记录划分为30秒时间段内的平均归一化搏动,为每个搏动分配一个高(即大于15毫米汞柱)或低颅内压的标签。该模型经过测试以预测颅内压升高的存在。在我们的数据集中,该算法检测颅内高压的准确率为92.05±2.25%。

相似文献

1
Detection of Intracranial Hypertension using Deep Learning.利用深度学习检测颅内高压
Proc IAPR Int Conf Pattern Recogn. 2016 Dec;2016:2491-2496. doi: 10.1109/ICPR.2016.7900010. Epub 2017 Apr 24.
3
Forecasting intracranial pressure elevation using pulse waveform morphology.利用脉搏波形形态预测颅内压升高。
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:4331-4. doi: 10.1109/IEMBS.2009.5332749.
7
Intracranial pressure waveform in patients with essential hypertension.原发性高血压患者的颅内压波形
Front Cardiovasc Med. 2023 Nov 21;10:1288080. doi: 10.3389/fcvm.2023.1288080. eCollection 2023.
10
Prevention and treatment of intracranial hypertension.颅内高压的预防与治疗。
Best Pract Res Clin Anaesthesiol. 2007 Dec;21(4):517-38. doi: 10.1016/j.bpa.2007.09.001.

引用本文的文献

6
[Artificial intelligence in neurocritical care].[神经重症监护中的人工智能]
Nervenarzt. 2021 Feb;92(2):115-126. doi: 10.1007/s00115-020-01050-4. Epub 2021 Jan 24.

本文引用的文献

1
Detection of Hyperperfusion on Arterial Spin Labeling using Deep Learning.利用深度学习检测动脉自旋标记法中的高灌注
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2015 Nov;2015:1322-1327. doi: 10.1109/BIBM.2015.7359870. Epub 2015 Dec 17.
2
Deep Learning of Tissue Fate Features in Acute Ischemic Stroke.急性缺血性卒中组织命运特征的深度学习
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2015 Nov;2015:1316-1321. doi: 10.1109/BIBM.2015.7359869. Epub 2015 Dec 17.
4
Reducing false intracranial pressure alarms using morphological waveform features.使用形态波形特征减少颅内压假警报。
IEEE Trans Biomed Eng. 2013 Jan;60(1):235-9. doi: 10.1109/TBME.2012.2210042. Epub 2012 Jul 24.
5
Intracranial hypertension prediction using extremely randomized decision trees.使用极端随机树预测颅内压升高。
Med Eng Phys. 2012 Oct;34(8):1058-65. doi: 10.1016/j.medengphy.2011.11.010. Epub 2012 Mar 7.
6
Bayesian tracking of intracranial pressure signal morphology.贝叶斯跟踪颅内压信号形态。
Artif Intell Med. 2012 Feb;54(2):115-23. doi: 10.1016/j.artmed.2011.08.007. Epub 2011 Oct 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验