Suppr超能文献

变则序贯停止法则:重复测量方差分析、多元相关、多元方差分析与卡方分布的有效性和功效。

Variable criteria sequential stopping rule: Validity and power with repeated measures ANOVA, multiple correlation, MANOVA and relation to Chi-square distribution.

机构信息

Department of Psychology and Office of Animal Welfare (Retired), University of Washington, Seattle, WA, 98195, USA.

出版信息

Behav Res Methods. 2018 Oct;50(5):1988-2003. doi: 10.3758/s13428-017-0968-5.

Abstract

The variable criteria sequential stopping rule (vcSSR) is an efficient way to add sample size to planned ANOVA tests while holding the observed rate of Type I errors, α, constant. The only difference from regular null hypothesis testing is that criteria for stopping the experiment are obtained from a table based on the desired power, rate of Type I errors, and beginning sample size. The vcSSR was developed using between-subjects ANOVAs, but it should work with p values from any type of F test. In the present study, the α remained constant at the nominal level when using the previously published table of criteria with repeated measures designs with various numbers of treatments per subject, Type I error rates, values of ρ, and four different sample size models. New power curves allow researchers to select the optimal sample size model for a repeated measures experiment. The criteria held α constant either when used with a multiple correlation that varied the sample size model and the number of predictor variables, or when used with MANOVA with multiple groups and two levels of a within-subject variable at various levels of ρ. Although not recommended for use with χ tests such as the Friedman rank ANOVA test, the vcSSR produces predictable results based on the relation between F and χ. Together, the data confirm the view that the vcSSR can be used to control Type I errors during sequential sampling with any t- or F-statistic rather than being restricted to certain ANOVA designs.

摘要

变量标准序贯停止规则(vcSSR)是一种在保持观察到的Ⅰ类错误率α不变的情况下,向计划的 ANOVA 检验中添加样本量的有效方法。与常规零假设检验的唯一区别是,停止实验的标准是根据所需的功效、Ⅰ类错误率和起始样本量从基于表获得的。vcSSR 是使用组间 ANOVA 开发的,但它应该适用于任何类型的 F 检验的 p 值。在本研究中,当使用以前发表的具有不同处理数的重复测量设计的标准表时,α保持在名义水平,Ⅰ类错误率、ρ 值和四种不同的样本量模型。新的功效曲线允许研究人员为重复测量实验选择最佳的样本量模型。标准在使用随样本量模型和预测变量数变化的多元相关时或在使用具有多个组和两个水平的组内变量的 MANOVA 时保持α不变,在不同的ρ水平。尽管不建议将其用于 χ 检验,如 Friedman 等级方差分析检验,但 vcSSR 基于 F 和 χ 之间的关系产生可预测的结果。总之,数据证实了这样一种观点,即 vcSSR 可以用于控制任何 t 或 F 统计量的序贯抽样中的Ⅰ类错误,而不限于某些 ANOVA 设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验