Suppr超能文献

RGDfK-肽修饰的藻酸盐支架用于细胞移植和心脏血管新生。

RGDfK-Peptide Modified Alginate Scaffold for Cell Transplantation and Cardiac Neovascularization.

机构信息

1 Department of Surgery, Columbia University Medical Center , New York, New York.

2 Department of Medicine, Columbia University Medical Center , New York, New York.

出版信息

Tissue Eng Part A. 2018 May;24(9-10):740-751. doi: 10.1089/ten.TEA.2017.0221. Epub 2017 Nov 13.

Abstract

Cell implantation for tissue repair is a promising new therapeutic strategy. Although direct injection of cells into tissue is appealing, cell viability and retention are not very good. Cell engraftment and survival following implantation are dependent on a sufficient supply of oxygen and nutrients through functional microcirculation as well as a suitable local microenvironment for implanted cells. In this study, we describe the development of a porous, biocompatible, three-dimensional (3D) alginate scaffold covalently modified with the synthetic cyclic RGDfK (Arg-Gly-Asp-D-Phe-Lys) peptide. Cyclic RGDfK peptide is protease resistant, highly stable in aqueous solutions, and has high affinity for cellular integrins. Cyclic RGDfK-modified alginate scaffolds were generated using a novel silicone sheet sandwich technique in combination with freeze-gelation, resulting in highly porous nonimmunogenic scaffolds that promoted both human and rodent cell survival in vitro, and neoangiogenesis in vivo. Two months following implantation in abdominal rectus muscles in rats, cyclic RGDfK-modified scaffolds were fully populated by host cells, especially microvasculature without an overt immune response or fibrosis, whereas unmodified control scaffolds did not show cell ingrowth. Importantly, modified scaffolds that were seeded with human mesenchymal precursor cells and were patched to the epicardial surface of infarcted myocardium induced myocardial neoangiogenesis and significantly improved cardiac function. In summary, purified cyclic RGDfK peptide-modified 3D alginate scaffolds are biocompatible and nonimmunogenic, enhance cell viability, promote angiogenesis, and may be used as a means to deliver cells to myocardial infarct areas to improve neovascularization and cardiac function.

摘要

细胞植入组织修复是一种很有前途的新治疗策略。尽管直接将细胞注入组织很有吸引力,但细胞活力和保留率并不高。细胞植入后的植入和存活取决于通过功能微循环提供足够的氧气和营养物质,以及为植入细胞提供合适的局部微环境。在这项研究中,我们描述了一种多孔、生物相容的 3D 藻酸盐支架的开发,该支架通过合成的环状 RGDfK(精氨酸-甘氨酸-天冬氨酸-苯丙氨酸-赖氨酸)肽共价修饰。环状 RGDfK 肽具有蛋白酶抗性,在水溶液中高度稳定,并且对细胞整联蛋白具有高亲和力。使用新型硅树脂片夹层技术结合冷冻凝胶化技术生成环状 RGDfK 修饰的藻酸盐支架,得到高度多孔的非免疫原性支架,可促进人和啮齿动物细胞在体外存活,并促进体内新生血管形成。在大鼠腹部直肌内植入两个月后,环状 RGDfK 修饰的支架完全被宿主细胞占据,特别是微脉管系统,没有明显的免疫反应或纤维化,而未修饰的对照支架则没有细胞浸润。重要的是,用人间充质前体细胞接种并贴附在梗死心肌的心外膜表面的改性支架诱导心肌新生血管形成,并显著改善心脏功能。总之,纯化的环状 RGDfK 肽修饰的 3D 藻酸盐支架具有生物相容性和非免疫原性,可提高细胞活力,促进血管生成,可作为将细胞递送到心肌梗死区域以改善新生血管和心脏功能的一种手段。

相似文献

1
RGDfK-Peptide Modified Alginate Scaffold for Cell Transplantation and Cardiac Neovascularization.
Tissue Eng Part A. 2018 May;24(9-10):740-751. doi: 10.1089/ten.TEA.2017.0221. Epub 2017 Nov 13.
2
Evaluation of polyelectrolyte complex-based scaffolds for mesenchymal stem cell therapy in cardiac ischemia treatment.
Acta Biomater. 2014 Feb;10(2):901-11. doi: 10.1016/j.actbio.2013.10.027. Epub 2013 Nov 5.
3
Influence of mechanical properties of alginate-based substrates on the performance of Schwann cells in culture.
J Biomater Sci Polym Ed. 2016 Jun;27(9):898-915. doi: 10.1080/09205063.2016.1170415. Epub 2016 Apr 22.
4
Integration of multiple cell-matrix interactions into alginate scaffolds for promoting cardiac tissue regeneration.
Biomaterials. 2011 Mar;32(7):1838-47. doi: 10.1016/j.biomaterials.2010.11.008. Epub 2010 Nov 26.
5
The effect of immobilized RGD peptide in alginate scaffolds on cardiac tissue engineering.
Acta Biomater. 2011 Jan;7(1):152-62. doi: 10.1016/j.actbio.2010.07.034. Epub 2010 Aug 3.
6
Pre-culture of mesenchymal stem cells within RGD-modified hyaluronic acid hydrogel improves their resilience to ischaemic conditions.
Acta Biomater. 2020 Apr 15;107:78-90. doi: 10.1016/j.actbio.2020.02.043. Epub 2020 Mar 4.
9
SIKVAV-modified highly superporous PHEMA scaffolds with oriented pores for spinal cord injury repair.
J Tissue Eng Regen Med. 2015 Nov;9(11):1298-309. doi: 10.1002/term.1694. Epub 2013 Feb 11.

引用本文的文献

1
Complementary biomolecular coassemblies direct energy transport for cardiac photostimulators.
Proc Natl Acad Sci U S A. 2025 Sep 9;122(36):e2509467122. doi: 10.1073/pnas.2509467122. Epub 2025 Sep 4.
2
Design and Biofunctionalization of Cloud Sponge-Inspired Scaffolds for Enhanced Bone Cell Performance.
ACS Appl Bio Mater. 2024 Dec 16;7(12):8281-8293. doi: 10.1021/acsabm.4c01065. Epub 2024 Nov 16.
3
biocompatibility testing of nanoparticle-functionalized alginate-chitosan scaffolds for tissue engineering applications.
Front Bioeng Biotechnol. 2023 Nov 23;11:1295626. doi: 10.3389/fbioe.2023.1295626. eCollection 2023.
4
Design of Functional RGD Peptide-Based Biomaterials for Tissue Engineering.
Pharmaceutics. 2023 Jan 19;15(2):345. doi: 10.3390/pharmaceutics15020345.
6
Multifunctional biomaterial platforms for blocking the fibrosis process and promoting cellular restoring effects in myocardial fibrosis therapy.
Front Bioeng Biotechnol. 2022 Sep 15;10:988683. doi: 10.3389/fbioe.2022.988683. eCollection 2022.
7
Progress in Bioengineering Strategies for Heart Regenerative Medicine.
Int J Mol Sci. 2022 Mar 23;23(7):3482. doi: 10.3390/ijms23073482.
8
Targeting angiogenesis in myocardial infarction: Novel therapeutics (Review).
Exp Ther Med. 2022 Jan;23(1):64. doi: 10.3892/etm.2021.10986. Epub 2021 Nov 22.
9
Natural Biomaterials for Cardiac Tissue Engineering: A Highly Biocompatible Solution.
Front Cardiovasc Med. 2020 Oct 23;7:554597. doi: 10.3389/fcvm.2020.554597. eCollection 2020.
10
Modulating Alginate Hydrogels for Improved Biological Performance as Cellular 3D Microenvironments.
Front Bioeng Biotechnol. 2020 Jun 30;8:665. doi: 10.3389/fbioe.2020.00665. eCollection 2020.

本文引用的文献

3
Prevascularization in tissue engineering: Current concepts and future directions.
Biotechnol Adv. 2016 Mar-Apr;34(2):112-21. doi: 10.1016/j.biotechadv.2015.12.004. Epub 2015 Dec 7.
4
Trypan Blue Exclusion Test of Cell Viability.
Curr Protoc Immunol. 2015 Nov 2;111:A3.B.1-A3.B.3. doi: 10.1002/0471142735.ima03bs111.
5
Cell-based therapies for cardiac disease: a cellular therapist's perspective.
Transfusion. 2015 Feb;55(2):441-51; quiz 440. doi: 10.1111/trf.12826. Epub 2014 Aug 22.
6
Cell therapy for human ischemic heart diseases: critical review and summary of the clinical experiences.
J Mol Cell Cardiol. 2014 Oct;75:12-24. doi: 10.1016/j.yjmcc.2014.06.016. Epub 2014 Jul 3.
7
Cell sheet approach for tissue engineering and regenerative medicine.
J Control Release. 2014 Sep 28;190:228-39. doi: 10.1016/j.jconrel.2014.05.024. Epub 2014 May 21.
8
Update on vascularization in tissue engineering.
Regen Med. 2013 Nov;8(6):759-70. doi: 10.2217/rme.13.74.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验