Suppr超能文献

75 岁及以上的所有患者都需要进行前列腺活检吗?

Are prostate biopsies necessary for all patients 75years and older?

机构信息

Department of Urology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing 100034, China; Institute of Urology, Peking University, National Urological Cancer Center, 8 Xishiku Street, Xicheng District, Beijing 100034, China.

Department of Urology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing 100034, China; Institute of Urology, Peking University, National Urological Cancer Center, 8 Xishiku Street, Xicheng District, Beijing 100034, China.

出版信息

J Geriatr Oncol. 2018 Mar;9(2):124-129. doi: 10.1016/j.jgo.2017.09.001. Epub 2017 Sep 19.

Abstract

PURPOSE

To develop nomograms predicting prostate cancer (PCa) and high-grade PCa (HGPCa) in the elderly population.

METHODS

We reviewed the data of patients aged 75years and older who underwent first-time prostate biopsy and multiparametric magnetic resonance imaging (mpMRI). The nomograms were developed based on multivariate analysis and evaluated. We performed the external validation and calibration of the risk calculators from the European Randomized Study of Screening for Prostate Cancer (ERSPC) and the Prostate Cancer Prevention Trial (PCPT).

RESULTS

The present study included 302 subjects with a median age of 78years (range: 75-91years). Overall, 225 and 129 subjects were diagnosed with PCa and HGPCa (Gleason score≥4+3), respectively. The ratio of free-to-total PSA, prostate-specific antigen density (PSAD), transrectal ultrasound (TRUS), and Prostate Imaging Reporting and Data System (PI-RADS) were used to develop the PCa-predicting nomogram, and PSAD, TRUS, and PI-RADS were used to develop the HGPCa-predicting nomogram. The area under the curve (AUC) values of PCa-predicting and HGPCa-predicting nomograms were 0.90 and 0.87. The ERSPC calculator had acceptable external calibration and validation outcomes. We recommended a cut-off probability of 42% for PCa-predicting nomogram when used in healthy older men to achieve a sensitivity of 95.6%, and a cut-off probability of 73% for HGPCa-predicting nomogram when used in vulnerable older men to achieve a specificity of 98.3%.

CONCLUSIONS

The present nomograms could help discriminate patients with PCa from healthy elder adults for standard treatment, and discriminate patients with HGPCa from vulnerable elder adults for modified treatment. External validation is expected.

摘要

目的

建立预测老年人群前列腺癌(PCa)和高级别前列腺癌(HGPCa)的列线图。

方法

我们回顾了首次接受前列腺活检和多参数磁共振成像(mpMRI)的 75 岁及以上患者的数据。基于多变量分析建立并评估了列线图。我们对欧洲前列腺癌筛查随机研究(ERSPC)和前列腺癌预防试验(PCPT)的风险计算器进行了外部验证和校准。

结果

本研究共纳入 302 例患者,中位年龄为 78 岁(范围:75-91 岁)。总体而言,225 例和 129 例患者分别被诊断为 PCa 和 HGPCa(Gleason 评分≥4+3)。游离前列腺特异性抗原与总前列腺特异性抗原比值、前列腺特异性抗原密度(PSAD)、经直肠超声(TRUS)和前列腺影像报告和数据系统(PI-RADS)用于建立 PCa 预测列线图,PSAD、TRUS 和 PI-RADS 用于建立 HGPCa 预测列线图。PCa 预测和 HGPCa 预测列线图的曲线下面积(AUC)值分别为 0.90 和 0.87。ERSPC 计算器具有可接受的外部校准和验证结果。我们建议将 PCa 预测列线图的截断概率设定为 42%,用于健康的老年男性,以达到 95.6%的敏感度;将 HGPCa 预测列线图的截断概率设定为 73%,用于脆弱的老年男性,以达到 98.3%的特异性。

结论

本列线图可帮助区分 PCa 患者与健康老年男性以进行标准治疗,区分 HGPCa 患者与脆弱老年男性以进行改良治疗。预计将进行外部验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验