Kleinberg Bennett, Mozes Maximilian, Arntz Arnoud, Verschuere Bruno
Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 129 D, 1018 WS, Amsterdam, The Netherlands.
Department of Informatics, Technical University of Munich, Boltzmannstr. 3, Garching near, Munich, Germany.
J Forensic Sci. 2018 May;63(3):714-723. doi: 10.1111/1556-4029.13645. Epub 2017 Sep 20.
There is an increasing demand for automated verbal deception detection systems. We propose named entity recognition (NER; i.e., the automatic identification and extraction of information from text) to model three established theoretical principles: (i) truth tellers provide accounts that are richer in detail, (ii) contain more contextual references (specific persons, locations, and times), and (iii) deceivers tend to withhold potentially checkable information. We test whether NER captures these theoretical concepts and can automatically identify truthful versus deceptive hotel reviews. We extracted the proportion of named entities with two NER tools (spaCy and Stanford's NER) and compared the discriminative ability to a lexicon word count approach (LIWC) and a measure of sentence specificity (speciteller). Named entities discriminated truthful from deceptive hotel reviews above chance level, and outperformed the lexicon approach and sentence specificity. This investigation suggests that named entities may be a useful addition to existing automated verbal deception detection approaches.
对自动言语欺骗检测系统的需求日益增长。我们提出命名实体识别(NER,即从文本中自动识别和提取信息)来对三个既定的理论原则进行建模:(i)说真话者提供的叙述细节更丰富,(ii)包含更多上下文参考(特定人物、地点和时间),以及(iii)欺骗者倾向于隐瞒可能可核实的信息。我们测试NER是否捕捉到这些理论概念,并能否自动识别真实与欺骗性的酒店评论。我们使用两种NER工具(spaCy和斯坦福NER)提取命名实体的比例,并将其判别能力与词汇计数方法(LIWC)和句子特异性度量(speciteller)进行比较。命名实体能够以高于随机水平的概率区分真实与欺骗性的酒店评论,并且优于词汇方法和句子特异性。这项研究表明,命名实体可能是现有自动言语欺骗检测方法的有益补充。