National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, PR China.
Jiangsu Province Key Laboratory for Nanotechnology, Eco-Materials and Renewable Energy Research Center (ERERC), School of Physics, Nanjing University, Nanjing, Jiangsu, 210093, PR China.
ChemSusChem. 2018 Jan 10;11(1):237-244. doi: 10.1002/cssc.201701679. Epub 2017 Nov 23.
The plasmon resonance effect of metal nanoparticles (NPs) offers a promising route to improve the solar energy conversion efficiency of semiconductors. In this study, it is revealed that hot electrons generated by the plasmon resonance effect of Au NPs tend to inject into the surface states instead of the conduction band of Fe O photoanodes, and then severe surface recombination occurs. Such an electron-transfer process seems to be independent of external applied potentials, but is sensitive to metal-semiconductor interface properties. Passivating the surface states of Fe O with a noncatalytic Al O layer can construct an effective resonant energy-transfer interface between Ti-doped Fe O (Ti-Fe O ) and Au NPs. In such a Ti-Fe O /Al O /Au electrode configuration, the enhanced photoelectrochemical (PEC) water-splitting performance can be attributed to the following two factors: 1) in the non-light-responsive wavelength range of Au NPs, both the relaxing Fermi pinning effect of the Al O passivation layer and the higher work function of Au enlarge band bending; thus promoting the charge separation; and 2) in the light-responsive wavelength range of Au NPs, the effective resonant energy transfer contributes to light harvesting and conversion. The interface manipulation proposed herein may provide a new route to design efficient plasmonic PEC devices for energy conversion.
金属纳米粒子(NPs)的等离子体共振效应为提高半导体的太阳能转换效率提供了一条很有前途的途径。在这项研究中,揭示了 Au NPs 的等离子体共振效应产生的热电子倾向于注入到 Fe O 光阳极的表面态而不是导带中,然后发生严重的表面复合。这种电子转移过程似乎不依赖于外部施加的电势,而是对金属-半导体界面性质敏感。用非催化的 Al O 层钝化 Fe O 的表面态,可以在 Ti 掺杂的 Fe O(Ti-Fe O )和 Au NPs 之间构建一个有效的共振能量转移界面。在这种 Ti-Fe O /Al O /Au 电极结构中,增强的光电化学(PEC)水分解性能可归因于以下两个因素:1)在 Au NPs 的非光响应波长范围内,Al O 钝化层的弛豫费米钉扎效应和 Au 的更高功函数都会扩大能带弯曲,从而促进电荷分离;2)在 Au NPs 的光响应波长范围内,有效的共振能量转移有助于光的捕获和转换。本文提出的界面操控可能为设计用于能量转换的高效等离子体 PEC 器件提供了一种新途径。