Wang Lei, Nguyen Nhat Truong, Schmuki Patrik
Department of Materials Science and Engineering, WW4-LKO, University of Erlangen-Nuremburg, Martensstrasse 7, 91058, Erlangen, Germany.
State Key Laboratory for Oxo Synthesis and Selective Oxidation National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, PR China.
ChemSusChem. 2016 Aug 23;9(16):2048-53. doi: 10.1002/cssc.201600462. Epub 2016 Jun 27.
The surface modification of semiconductor photoelectrodes with passivation overlayers has attracted great attention as an effective strategy to improve the charge separation and charge transfer processes across the semiconductor-electrolyte interface. In this work, a thin Fe2 TiO5 layer was decorated on nanostructured hematite nanoflake and nanocoral photoanodes (by thermal oxidation of iron foils) by a facile water-based solution method. Photoelectrochemical measurements show that the Fe2 O3 /Fe2 TiO5 heterostructure exhibits an obvious enhancement in photoelectrochemical water oxidation performance compared to the pristine hematite. For example, at 1.23 V versus the reversible hydrogen electrode (VRHE ) in 1 m KOH under AM 1.5 G (100 mW cm(-2) ) illumination, a 4-8× increase in the water oxidation photocurrent is achieved for Fe2 O3 /Fe2 TiO5 , and a considerable cathodic shift of the onset potential up to 0.53-0.62 VRHE is obtained. Moreover, the performance of the Fe2 O3 /Fe2 TiO5 heterostructure can be further improved by decoration with a SnOx layer. The enhancement in photocurrent can be attributed to the synergistic effect of Fe2 TiO5 /SnOx overlayers passivating surface states, and thus reducing surface electron-hole recombination.
用钝化覆盖层对半导体光电极进行表面改性,作为一种改善电荷分离和电荷转移过程、跨越半导体 - 电解质界面的有效策略,已引起了广泛关注。在这项工作中,通过一种简便的水基溶液法,在纳米结构的赤铁矿纳米片和纳米珊瑚光阳极上(通过铁箔的热氧化)修饰了一层薄的Fe2TiO5层。光电化学测量表明,与原始赤铁矿相比,Fe2O3/Fe2TiO5异质结构在光电化学水氧化性能方面表现出明显增强。例如,在1m KOH中,相对于可逆氢电极(VRHE)为1.23V,在AM 1.5G(100mW cm(-2))光照下,Fe2O3/Fe2TiO5的水氧化光电流增加了4 - 8倍,并且起始电位有相当大的阴极偏移,高达0.53 - 0.62VRHE。此外,通过用SnOx层修饰,可以进一步提高Fe2O3/Fe2TiO5异质结构的性能。光电流的增强可归因于Fe2TiO5/SnOx覆盖层钝化表面态的协同效应,从而减少表面电子 - 空穴复合。