Suppr超能文献

影响澳大利亚翼手目蝙蝠种群中亨德拉病毒排出时间和数量的因素。

Conditions affecting the timing and magnitude of Hendra virus shedding across pteropodid bat populations in Australia.

作者信息

Páez D J, Giles J, McCallum H, Field H, Jordan D, Peel A J, Plowright R K

机构信息

Department of Microbiology and Immunology,Montana State University,Bozeman,USA.

Griffith School of Environment,Griffith University,Queensland,Australia.

出版信息

Epidemiol Infect. 2017 Nov;145(15):3143-3153. doi: 10.1017/S0950268817002138. Epub 2017 Sep 25.

Abstract

Understanding infection dynamics in animal hosts is fundamental to managing spillover and emergence of zoonotic infections. Hendra virus is endemic in Australian pteropodid bat populations and can be lethal to horses and humans. However, we know little about the factors driving Hendra virus prevalence in resevoir bat populations, making spillover difficult to predict. We use Hendra virus prevalence data collected from 13 000 pooled bat urine samples across space and time to determine if pulses of prevalence are periodic and synchronized across sites. We also test whether site-specific precipitation and temperature affect the amplitude of the largest annual prevalence pulses. We found little evidence for a periodic signal in Hendra virus prevalence. Although the largest amplitude pulses tended to occur over winter, pulses could also occur in other seasons. We found that Hendra virus prevalence was weakly synchronized across sites over short distances, suggesting that prevalence is driven by local-scale effects. Finally, we found that drier conditions in previous seasons and the abundance of Pteropus alecto were positively correlated with the peak annual values of Hendra virus prevalence. Our results suggest that in addition to seasonal effects, bat density and local climatic conditions interact to drive Hendra virus infection dynamics.

摘要

了解动物宿主中的感染动态对于控制人畜共患病感染的溢出和出现至关重要。亨德拉病毒在澳大利亚翼手目蝙蝠种群中呈地方性流行,可导致马匹和人类死亡。然而,我们对驱动亨德拉病毒在宿主蝙蝠种群中流行的因素知之甚少,这使得溢出难以预测。我们使用从13000份跨时空采集的蝙蝠尿液混合样本中收集的亨德拉病毒流行数据,来确定流行脉冲是否具有周期性以及各地点之间是否同步。我们还测试特定地点的降水和温度是否会影响年度最大流行脉冲的幅度。我们几乎没有发现亨德拉病毒流行存在周期性信号的证据。尽管最大幅度的脉冲往往发生在冬季,但其他季节也可能出现。我们发现,亨德拉病毒的流行在短距离内各地点之间存在微弱同步,这表明流行是由局部尺度效应驱动的。最后,我们发现前几个季节较干燥的条件和黑首狐蝠的数量与亨德拉病毒流行的年度峰值呈正相关。我们的结果表明,除了季节效应外,蝙蝠密度和当地气候条件相互作用,共同驱动亨德拉病毒的感染动态。

相似文献

1
Conditions affecting the timing and magnitude of Hendra virus shedding across pteropodid bat populations in Australia.
Epidemiol Infect. 2017 Nov;145(15):3143-3153. doi: 10.1017/S0950268817002138. Epub 2017 Sep 25.
2
Physiological stress and Hendra virus in flying-foxes (Pteropus spp.), Australia.
PLoS One. 2017 Aug 2;12(8):e0182171. doi: 10.1371/journal.pone.0182171. eCollection 2017.
3
Henipaviruses: an updated review focusing on the pteropid reservoir and features of transmission.
Zoonoses Public Health. 2013 Feb;60(1):69-83. doi: 10.1111/j.1863-2378.2012.01501.x. Epub 2012 Jun 18.
5
Investigation of the climatic and environmental context of Hendra virus spillover events 1994-2010.
PLoS One. 2011;6(12):e28374. doi: 10.1371/journal.pone.0028374. Epub 2011 Dec 1.
6
Routes of Hendra Virus Excretion in Naturally-Infected Flying-Foxes: Implications for Viral Transmission and Spillover Risk.
PLoS One. 2015 Oct 15;10(10):e0140670. doi: 10.1371/journal.pone.0140670. eCollection 2015.
7
Recrudescent infection supports Hendra virus persistence in Australian flying-fox populations.
PLoS One. 2013 Nov 28;8(11):e80430. doi: 10.1371/journal.pone.0080430. eCollection 2013.
8
PHYSIOLOGIC BIOMARKERS AND HENDRA VIRUS INFECTION IN AUSTRALIAN BLACK FLYING FOXES (PTEROPUS ALECTO).
J Wildl Dis. 2017 Jan;53(1):111-120. doi: 10.7589/2016-05-100. Epub 2016 Oct 10.
10
Flying-fox species density--a spatial risk factor for Hendra virus infection in horses in eastern Australia.
PLoS One. 2014 Jun 17;9(6):e99965. doi: 10.1371/journal.pone.0099965. eCollection 2014.

引用本文的文献

1
Longitudinal impacts of habitat fragmentation on and hemotropic dynamics in vampire bats.
bioRxiv. 2025 Jul 24:2025.07.21.665613. doi: 10.1101/2025.07.21.665613.
3
A One Health approach to understanding and managing Nipah virus outbreaks.
Nat Microbiol. 2025 May 28. doi: 10.1038/s41564-025-02020-9.
4
A tale of endurance: bats, viruses and immune dynamics.
Future Microbiol. 2024 Jun 12;19(9):841-856. doi: 10.2217/fmb-2023-0233. Epub 2024 Apr 22.
6
The Virome of Bats Inhabiting Brazilian Biomes: Knowledge Gaps and Biases towards Zoonotic Viruses.
Microbiol Spectr. 2023 Feb 14;11(1):e0407722. doi: 10.1128/spectrum.04077-22. Epub 2023 Jan 10.
8
Co-circulation of alpha- and beta-coronaviruses in Pteropus vampyrus flying foxes from Indonesia.
Transbound Emerg Dis. 2022 Nov;69(6):3917-3925. doi: 10.1111/tbed.14762. Epub 2022 Dec 2.
9
Seasonal dynamics of the wild rodent faecal virome.
Mol Ecol. 2023 Sep;32(17):4763-4776. doi: 10.1111/mec.16778. Epub 2022 Nov 23.
10
Discovery and Genomic Characterization of a Novel Henipavirus, Angavokely Virus, from Fruit Bats in Madagascar.
J Virol. 2022 Sep 28;96(18):e0092122. doi: 10.1128/jvi.00921-22. Epub 2022 Aug 30.

本文引用的文献

1
Physiological stress and Hendra virus in flying-foxes (Pteropus spp.), Australia.
PLoS One. 2017 Aug 2;12(8):e0182171. doi: 10.1371/journal.pone.0182171. eCollection 2017.
2
Pathways to zoonotic spillover.
Nat Rev Microbiol. 2017 Aug;15(8):502-510. doi: 10.1038/nrmicro.2017.45. Epub 2017 May 30.
3
Models of Eucalypt phenology predict bat population flux.
Ecol Evol. 2016 Sep 21;6(20):7230-7245. doi: 10.1002/ece3.2382. eCollection 2016 Oct.
4
Transmission or Within-Host Dynamics Driving Pulses of Zoonotic Viruses in Reservoir-Host Populations.
PLoS Negl Trop Dis. 2016 Aug 4;10(8):e0004796. doi: 10.1371/journal.pntd.0004796. eCollection 2016 Aug.
5
Relationships between host body condition and immunocompetence, not host sex, best predict parasite burden in a bat-helminth system.
Parasitol Res. 2016 Jun;115(6):2155-64. doi: 10.1007/s00436-016-4957-x. Epub 2016 Feb 22.
6
Spatiotemporal Aspects of Hendra Virus Infection in Pteropid Bats (Flying-Foxes) in Eastern Australia.
PLoS One. 2015 Dec 1;10(12):e0144055. doi: 10.1371/journal.pone.0144055. eCollection 2015.
7
Natural Hendra Virus Infection in Flying-Foxes - Tissue Tropism and Risk Factors.
PLoS One. 2015 Jun 10;10(6):e0128835. doi: 10.1371/journal.pone.0128835. eCollection 2015.
8
Flying-fox roost disturbance and Hendra virus spillover risk.
PLoS One. 2015 May 27;10(5):e0125881. doi: 10.1371/journal.pone.0125881. eCollection 2015.
9
Ecological dynamics of emerging bat virus spillover.
Proc Biol Sci. 2015 Jan 7;282(1798):20142124. doi: 10.1098/rspb.2014.2124.
10
Flying-fox species density--a spatial risk factor for Hendra virus infection in horses in eastern Australia.
PLoS One. 2014 Jun 17;9(6):e99965. doi: 10.1371/journal.pone.0099965. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验