Lee DongHyuk, Carroll Raymond J, Sinha Samiran
Department of Statistics, Texas A&M University, 3143 TAMU, College Station, TX 77843-3143, USA.
School of Mathematical and Physical Sciences, University of Technology Sydney, Broadway NSW 2007, Australia.
Comput Stat. 2017 Sep;32(3):867-888. doi: 10.1007/s00180-017-0710-x. Epub 2017 Jan 30.
Frequentist standard errors are a measure of uncertainty of an estimator, and the basis for statistical inferences. Frequestist standard errors can also be derived for Bayes estimators. However, except in special cases, the computation of the standard error of Bayesian estimators requires bootstrapping, which in combination with Markov chain Monte Carlo (MCMC) can be highly time consuming. We discuss an alternative approach for computing frequentist standard errors of Bayesian estimators, including importance sampling. Through several numerical examples we show that our approach can be much more computationally efficient than the standard bootstrap.
频率主义标准误差是估计量不确定性的一种度量,也是统计推断的基础。贝叶斯估计量也可以导出频率主义标准误差。然而,除特殊情况外,贝叶斯估计量标准误差的计算需要进行自助法抽样,而这与马尔可夫链蒙特卡罗(MCMC)方法相结合可能会非常耗时。我们讨论了一种计算贝叶斯估计量频率主义标准误差的替代方法,包括重要性抽样。通过几个数值例子,我们表明我们的方法在计算效率上可比标准自助法抽样高得多。