Suppr超能文献

贝叶斯估计量的频率主义标准误差

Frequentist Standard Errors of Bayes Estimators.

作者信息

Lee DongHyuk, Carroll Raymond J, Sinha Samiran

机构信息

Department of Statistics, Texas A&M University, 3143 TAMU, College Station, TX 77843-3143, USA.

School of Mathematical and Physical Sciences, University of Technology Sydney, Broadway NSW 2007, Australia.

出版信息

Comput Stat. 2017 Sep;32(3):867-888. doi: 10.1007/s00180-017-0710-x. Epub 2017 Jan 30.

Abstract

Frequentist standard errors are a measure of uncertainty of an estimator, and the basis for statistical inferences. Frequestist standard errors can also be derived for Bayes estimators. However, except in special cases, the computation of the standard error of Bayesian estimators requires bootstrapping, which in combination with Markov chain Monte Carlo (MCMC) can be highly time consuming. We discuss an alternative approach for computing frequentist standard errors of Bayesian estimators, including importance sampling. Through several numerical examples we show that our approach can be much more computationally efficient than the standard bootstrap.

摘要

频率主义标准误差是估计量不确定性的一种度量,也是统计推断的基础。贝叶斯估计量也可以导出频率主义标准误差。然而,除特殊情况外,贝叶斯估计量标准误差的计算需要进行自助法抽样,而这与马尔可夫链蒙特卡罗(MCMC)方法相结合可能会非常耗时。我们讨论了一种计算贝叶斯估计量频率主义标准误差的替代方法,包括重要性抽样。通过几个数值例子,我们表明我们的方法在计算效率上可比标准自助法抽样高得多。

相似文献

1
Frequentist Standard Errors of Bayes Estimators.
Comput Stat. 2017 Sep;32(3):867-888. doi: 10.1007/s00180-017-0710-x. Epub 2017 Jan 30.
2
Honest Importance Sampling with Multiple Markov Chains.
J Comput Graph Stat. 2015;24(3):792-826. doi: 10.1080/10618600.2014.929523. Epub 2015 Sep 16.
4
Combining estimators in interlaboratory studies and meta-analyses.
Res Synth Methods. 2023 May;14(3):526-543. doi: 10.1002/jrsm.1633. Epub 2023 Mar 22.
5
Reducing Monte Carlo error in the Bayesian estimation of risk ratios using log-binomial regression models.
Stat Med. 2015 Aug 30;34(19):2755-67. doi: 10.1002/sim.6527. Epub 2015 May 5.
6
Point estimation and related classification problems for several Lindley populations with application using COVID-19 data.
J Appl Stat. 2023 Sep 6;51(10):1976-2006. doi: 10.1080/02664763.2023.2251100. eCollection 2024.
8
Joining forces of Bayesian and frequentist methodology: a study for inference in the presence of non-identifiability.
Philos Trans A Math Phys Eng Sci. 2012 Dec 31;371(1984):20110544. doi: 10.1098/rsta.2011.0544. Print 2013 Feb 13.
9
Monte Carlo approaches to frequentist multiplicity-adjusted benefiting subgroup identification.
Stat Methods Med Res. 2021 Apr;30(4):1026-1041. doi: 10.1177/0962280220973705. Epub 2020 Dec 1.
10
A simple introduction to Markov Chain Monte-Carlo sampling.
Psychon Bull Rev. 2018 Feb;25(1):143-154. doi: 10.3758/s13423-016-1015-8.

本文引用的文献

1
Frequentist accuracy of Bayesian estimates.
J R Stat Soc Series B Stat Methodol. 2015 Jun;77(3):617-646. doi: 10.1111/rssb.12080.
2
Bayesian inference and the parametric bootstrap.
Ann Appl Stat. 2012 Oct 1;6(4):1971-1997. doi: 10.1214/12-AOAS571.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验