Suppr超能文献

贝叶斯法还是自助法?一项比较贝叶斯马尔可夫链蒙特卡罗抽样和自助法在评估系统发育置信度时性能的模拟研究。

Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence.

作者信息

Alfaro Michael E, Zoller Stefan, Lutzoni François

机构信息

Evolution and Ecology, University of California, Davis, USA.

出版信息

Mol Biol Evol. 2003 Feb;20(2):255-66. doi: 10.1093/molbev/msg028.

Abstract

Bayesian Markov chain Monte Carlo sampling has become increasingly popular in phylogenetics as a method for both estimating the maximum likelihood topology and for assessing nodal confidence. Despite the growing use of posterior probabilities, the relationship between the Bayesian measure of confidence and the most commonly used confidence measure in phylogenetics, the nonparametric bootstrap proportion, is poorly understood. We used computer simulation to investigate the behavior of three phylogenetic confidence methods: Bayesian posterior probabilities calculated via Markov chain Monte Carlo sampling (BMCMC-PP), maximum likelihood bootstrap proportion (ML-BP), and maximum parsimony bootstrap proportion (MP-BP). We simulated the evolution of DNA sequence on 17-taxon topologies under 18 evolutionary scenarios and examined the performance of these methods in assigning confidence to correct monophyletic and incorrect monophyletic groups, and we examined the effects of increasing character number on support value. BMCMC-PP and ML-BP were often strongly correlated with one another but could provide substantially different estimates of support on short internodes. In contrast, BMCMC-PP correlated poorly with MP-BP across most of the simulation conditions that we examined. For a given threshold value, more correct monophyletic groups were supported by BMCMC-PP than by either ML-BP or MP-BP. When threshold values were chosen that fixed the rate of accepting incorrect monophyletic relationship as true at 5%, all three methods recovered most of the correct relationships on the simulated topologies, although BMCMC-PP and ML-BP performed better than MP-BP. BMCMC-PP was usually a less biased predictor of phylogenetic accuracy than either bootstrapping method. BMCMC-PP provided high support values for correct topological bipartitions with fewer characters than was needed for nonparametric bootstrap.

摘要

贝叶斯马尔可夫链蒙特卡罗抽样在系统发育学中越来越受欢迎,它是一种用于估计最大似然拓扑结构和评估节点置信度的方法。尽管后验概率的使用越来越多,但在系统发育学中,贝叶斯置信度度量与最常用的置信度度量——非参数自展比例之间的关系却鲜为人知。我们使用计算机模拟来研究三种系统发育置信度方法的行为:通过马尔可夫链蒙特卡罗抽样计算的贝叶斯后验概率(BMCMC-PP)、最大似然自展比例(ML-BP)和最大简约自展比例(MP-BP)。我们在18种进化场景下模拟了17个分类单元拓扑结构上的DNA序列进化,并检验了这些方法在为正确的单系群和错误的单系群赋予置信度方面的表现,同时我们还研究了增加字符数量对支持值的影响。BMCMC-PP和ML-BP通常彼此高度相关,但在短分支上可能会提供截然不同的支持估计。相比之下,在我们研究的大多数模拟条件下,BMCMC-PP与MP-BP的相关性较差。对于给定的阈值,BMCMC-PP支持的正确单系群比ML-BP或MP-BP更多。当选择阈值将接受错误单系关系为真的比率固定在5%时,尽管BMCMC-PP和ML-BP的表现优于MP-BP,但这三种方法在模拟拓扑结构上都恢复了大部分正确关系。BMCMC-PP通常比任何一种自展方法在系统发育准确性预测上的偏差都更小。与非参数自展相比,BMCMC-PP为正确的拓扑二分法提供高支持值所需的字符更少。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验