Suppr超能文献

解决基于全球定位系统的活动监测中的位置不确定性:一个方法框架。

Addressing location uncertainties in GPS-based activity monitoring: A methodological framework.

作者信息

Wan Neng, Lin Ge, Wilson Gaines J

机构信息

University of Utah, Department of Geography, 260 S. Central Campus Dr., Salt Lake City, UT 84112-9155.

University of Nevada - Las Vegas, School of Community Health Sciences, Las Vegas, NV 89154.

出版信息

Trans GIS. 2017 Aug;21(4):764-781. doi: 10.1111/tgis.12231. Epub 2016 Sep 19.

Abstract

Location uncertainty has been a major barrier in information mining from location data. Although the development of electronic and telecommunication equipment has led to an increased amount and refined resolution of data about individuals' spatio-temporal trajectories, the potential of such data, especially in the context of environmental health studies, has not been fully realized due to the lack of methodology that addresses location uncertainties. This article describes a methodological framework for deriving information about people's continuous activities from individual-collected Global Positioning System (GPS) data, which is vital for a variety of environmental health studies. This framework is composed of two major methods that address critical issues at different stages of GPS data processing: (1) a fuzzy classification method for distinguishing activity patterns; and (2) a scale-adaptive method for refining activity locations and outdoor/indoor environments. Evaluation of this framework based on smartphone-collected GPS data indicates that it is robust to location errors and is able to generate useful information about individuals' life trajectories.

摘要

位置不确定性一直是从位置数据中挖掘信息的主要障碍。尽管电子和电信设备的发展使得关于个人时空轨迹的数据量增加且分辨率提高,但由于缺乏解决位置不确定性的方法,此类数据的潜力,尤其是在环境健康研究背景下,尚未得到充分实现。本文描述了一种从个人收集的全球定位系统(GPS)数据中获取有关人们连续活动信息的方法框架,这对于各种环境健康研究至关重要。该框架由两种主要方法组成,它们在GPS数据处理的不同阶段解决关键问题:(1)用于区分活动模式的模糊分类方法;(2)用于细化活动位置和室外/室内环境的尺度自适应方法。基于智能手机收集的GPS数据对该框架进行的评估表明,它对位置误差具有鲁棒性,并且能够生成有关个人生活轨迹的有用信息。

相似文献

1
Addressing location uncertainties in GPS-based activity monitoring: A methodological framework.
Trans GIS. 2017 Aug;21(4):764-781. doi: 10.1111/tgis.12231. Epub 2016 Sep 19.
3
Automated time activity classification based on global positioning system (GPS) tracking data.
Environ Health. 2011 Nov 14;10:101. doi: 10.1186/1476-069X-10-101.
6
Individual level spatial-temporal modelling of exposure potential of livestock in the Cove Wash watershed, Arizona.
Ann GIS. 2023;29(1):87-107. doi: 10.1080/19475683.2022.2075935. Epub 2022 May 30.
7
Deriving spatially explicit direct and indirect interaction networks from animal movement data.
Ecol Evol. 2023 Mar 26;13(3):e9774. doi: 10.1002/ece3.9774. eCollection 2023 Mar.
8
Refining Time-Activity Classification of Human Subjects Using the Global Positioning System.
PLoS One. 2016 Feb 26;11(2):e0148875. doi: 10.1371/journal.pone.0148875. eCollection 2016.

引用本文的文献

1
Mobile phone enabled mental health monitoring to enhance diagnosis for severity assessment of behaviours: a review.
PeerJ Comput Sci. 2022 Aug 2;8:e1042. doi: 10.7717/peerj-cs.1042. eCollection 2022.
2
MCMTC: A Pragmatic Framework for Selecting an Experimental Design to Inform the Development of Digital Interventions.
Front Digit Health. 2022 Mar 9;4:798025. doi: 10.3389/fdgth.2022.798025. eCollection 2022.
3
The mobile assistance for regulating smoking (MARS) micro-randomized trial design protocol.
Contemp Clin Trials. 2021 Nov;110:106513. doi: 10.1016/j.cct.2021.106513. Epub 2021 Jul 24.

本文引用的文献

1
Assessing Smart Phones for Generating Life-space Indicators.
Environ Plann B Plann Des. 2013 Apr;40(2):350-361. doi: 10.1068/b38200. Epub 2013 Apr 1.
3
Personal exposure monitoring of PM2.5 in indoor and outdoor microenvironments.
Sci Total Environ. 2015 Mar 1;508:383-94. doi: 10.1016/j.scitotenv.2014.12.003. Epub 2014 Dec 11.
5
A framework for using GPS data in physical activity and sedentary behavior studies.
Exerc Sport Sci Rev. 2015 Jan;43(1):48-56. doi: 10.1249/JES.0000000000000035.
6
Medicine. Spatial turn in health research.
Science. 2013 Mar 22;339(6126):1390-2. doi: 10.1126/science.1232257.
7
Detecting activity locations from raw GPS data: a novel kernel-based algorithm.
Int J Health Geogr. 2013 Mar 16;12:14. doi: 10.1186/1476-072X-12-14.
8
Treadmill gait speeds correlate with physical activity counts measured by cell phone accelerometers.
Gait Posture. 2012 Jun;36(2):241-8. doi: 10.1016/j.gaitpost.2012.02.025. Epub 2012 Apr 2.
9
Automated time activity classification based on global positioning system (GPS) tracking data.
Environ Health. 2011 Nov 14;10:101. doi: 10.1186/1476-069X-10-101.
10
Development and validation of a movement and activity in physical space score as a functional outcome measure.
Arch Phys Med Rehabil. 2011 Oct;92(10):1652-8. doi: 10.1016/j.apmr.2011.05.001. Epub 2011 Aug 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验