Suppr超能文献

流行病学研究中的决策树

Decision trees in epidemiological research.

作者信息

Venkatasubramaniam Ashwini, Wolfson Julian, Mitchell Nathan, Barnes Timothy, JaKa Meghan, French Simone

机构信息

Urban Big Data Centre, University of Glasgow, 7 Lilybank Gardens, Glasgow, G12 8RZ UK.

Division of Biostatistics, University of Minnesota, Twin Cities, A453 Mayo Building, MMC 303, 420 Delaware St SE, Minneapolis, MN 55455 USA.

出版信息

Emerg Themes Epidemiol. 2017 Sep 20;14:11. doi: 10.1186/s12982-017-0064-4. eCollection 2017.

Abstract

BACKGROUND

In many studies, it is of interest to identify population subgroups that are relatively homogeneous with respect to an outcome. The nature of these subgroups can provide insight into effect mechanisms and suggest targets for tailored interventions. However, identifying relevant subgroups can be challenging with standard statistical methods.

MAIN TEXT

We review the literature on decision trees, a family of techniques for partitioning the population, on the basis of covariates, into distinct subgroups who share similar values of an outcome variable. We compare two decision tree methods, the popular Classification and Regression tree (CART) technique and the newer Conditional Inference tree (CTree) technique, assessing their performance in a simulation study and using data from the Box Lunch Study, a randomized controlled trial of a portion size intervention. Both CART and CTree identify homogeneous population subgroups and offer improved prediction accuracy relative to regression-based approaches when subgroups are truly present in the data. An important distinction between CART and CTree is that the latter uses a formal statistical hypothesis testing framework in building decision trees, which simplifies the process of identifying and interpreting the final tree model. We also introduce a novel way to visualize the subgroups defined by decision trees. Our novel graphical visualization provides a more scientifically meaningful characterization of the subgroups identified by decision trees.

CONCLUSIONS

Decision trees are a useful tool for identifying homogeneous subgroups defined by combinations of individual characteristics. While all decision tree techniques generate subgroups, we advocate the use of the newer CTree technique due to its simplicity and ease of interpretation.

摘要

背景

在许多研究中,识别在某一结果方面相对同质的人群亚组很有意义。这些亚组的性质可以为效应机制提供见解,并为量身定制的干预措施指明目标。然而,使用标准统计方法识别相关亚组可能具有挑战性。

正文

我们回顾了关于决策树的文献,决策树是一类基于协变量将人群划分为具有相似结果变量值的不同亚组的技术。我们比较了两种决策树方法,即流行的分类与回归树(CART)技术和较新的条件推断树(CTree)技术,在模拟研究中评估它们的性能,并使用盒装午餐研究的数据,该研究是一项关于分量干预的随机对照试验。当数据中真正存在亚组时,CART和CTree都能识别出同质的人群亚组,并且相对于基于回归的方法能提供更高的预测准确性。CART和CTree之间的一个重要区别在于,后者在构建决策树时使用了正式的统计假设检验框架,这简化了识别和解释最终树模型的过程。我们还介绍了一种可视化决策树定义的亚组的新方法。我们新颖的图形可视化提供了对决策树识别出的亚组更具科学意义的表征。

结论

决策树是识别由个体特征组合定义的同质亚组的有用工具。虽然所有决策树技术都会生成亚组,但由于其简单性和易于解释性,我们提倡使用较新的CTree技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7534/5607590/d229920bfbe8/12982_2017_64_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验