文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

整合标志调查和遥测数据以估算罗马尼亚喀尔巴阡山脉棕熊( )的密度。

Integrating sign surveys and telemetry data for estimating brown bear () density in the Romanian Carpathians.

作者信息

Popescu Viorel D, Iosif Ruben, Pop Mihai I, Chiriac Silviu, Bouroș George, Furnas Brett J

机构信息

Department of Biological Sciences Ohio University Athens OH USA.

Centre for Environmental Research (CCMESI) University of Bucharest Bucharest Romania.

出版信息

Ecol Evol. 2017 Aug 1;7(18):7134-7144. doi: 10.1002/ece3.3177. eCollection 2017 Sep.


DOI:10.1002/ece3.3177
PMID:28944005
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5606905/
Abstract

Accurate population size estimates are important information for sustainable wildlife management. The Romanian Carpathians harbor the largest brown bear () population in Europe, yet current management relies on estimates of density that lack statistical oversight and ignore uncertainty deriving from track surveys. In this study, we investigate an alternative approach to estimate brown bear density using sign surveys along transects within a novel integration of occupancy models and home range methods. We performed repeated surveys along 2-km segments of forest roads during three distinct seasons: spring 2011, fall-winter 2011, and spring 2012, within three game management units and a Natura 2000 site. We estimated bears abundances along transects using the number of unique tracks observed per survey occasion via N-mixture hierarchical models, which account for imperfect detection. To obtain brown bear densities, we combined these abundances with the effective sampling area of the transects, that is, estimated as a function of the median (± bootstrapped SE) of the core home range (5.58 ± 1.08 km) based on telemetry data from 17 bears tracked for 1-month periods overlapping our surveys windows. Our analyses yielded average brown bear densities (and 95% confidence intervals) for the three seasons of: 11.5 (7.8-15.3), 11.3 (7.4-15.2), and 12.4 (8.6-16.3) individuals/100 km. Across game management units, mean densities ranged between 7.5 and 14.8 individuals/100 km. Our method incorporates multiple sources of uncertainty (e.g., effective sampling area, imperfect detection) to estimate brown bear density, but the inference fundamentally relies on unmarked individuals only. While useful as a temporary approach to monitor brown bears, we urge implementing DNA capture-recapture methods regionally to inform brown bear management and recommend increasing resources for GPS collars to improve estimates of effective sampling area.

摘要

准确的种群数量估计是野生动物可持续管理的重要信息。罗马尼亚喀尔巴阡山脉拥有欧洲最大的棕熊种群,但目前的管理依赖于缺乏统计监督且忽略了来自足迹调查不确定性的密度估计。在本研究中,我们在占用模型和家域方法的新型整合中,使用沿样带的迹象调查来研究一种估计棕熊密度的替代方法。我们在三个狩猎管理单元和一个2000自然网络站点内,于2011年春季、2011年秋冬和2012年春季这三个不同季节,沿着2公里长的林道段进行了重复调查。我们通过N - 混合分层模型,利用每次调查中观察到的独特足迹数量来估计样带上的熊数量,该模型考虑了不完全检测的情况。为了获得棕熊密度,我们将这些数量与样带的有效采样面积相结合,有效采样面积根据17只熊的遥测数据估计,这些熊在与我们调查窗口重叠的1个月期间被追踪,核心家域的中位数(±自抽样标准误)为函数,即5.58 ± 1.08公里。我们的分析得出三个季节的平均棕熊密度(及95%置信区间)为:11.5(7.8 - 15.3)、11.3(7.4 - 15.2)和12.4(8.6 - 16.3)只/100平方公里。在各个狩猎管理单元中,平均密度在7.5至14.8只/100平方公里之间。我们的方法纳入了多种不确定性来源(如有效采样面积、不完全检测)来估计棕熊密度,但推断基本上仅依赖于未标记个体。虽然作为监测棕熊的临时方法有用,但我们敦促在区域内实施DNA捕获 - 重捕方法以指导棕熊管理,并建议增加用于GPS项圈的资源以改进有效采样面积的估计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d6f/5606905/5ed606209e81/ECE3-7-7134-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d6f/5606905/308435682ded/ECE3-7-7134-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d6f/5606905/dab1defbf45f/ECE3-7-7134-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d6f/5606905/e2e329369af5/ECE3-7-7134-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d6f/5606905/5ed606209e81/ECE3-7-7134-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d6f/5606905/308435682ded/ECE3-7-7134-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d6f/5606905/dab1defbf45f/ECE3-7-7134-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d6f/5606905/e2e329369af5/ECE3-7-7134-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d6f/5606905/5ed606209e81/ECE3-7-7134-g004.jpg

相似文献

[1]
Integrating sign surveys and telemetry data for estimating brown bear () density in the Romanian Carpathians.

Ecol Evol. 2017-8-1

[2]
Implementing a comprehensive approach to study the causes of human-bear (Ursus arctos pruinosus) conflicts in the Sanjiangyuan region, China.

Sci Total Environ. 2021-6-10

[3]
Genetic differentiation and asymmetric gene flow among Carpathian brown bear () populations-Implications for conservation of transboundary populations.

Ecol Evol. 2019-1-23

[4]
Inferring fine-scale spatial structure of the brown bear (Ursus arctos) population in the Carpathians prior to infrastructure development.

Sci Rep. 2019-7-1

[5]
Canine adenovirus type 1 (CAdV-1) in free-ranging European brown bear (Ursus arctos arctos): A threat for Cantabrian population?

Transbound Emerg Dis. 2018-9-20

[6]
Evaluating density-weighted connectivity of black bears (Ursus americanus) in Glacier National Park with spatial capture-recapture models.

Mov Ecol. 2024-1-23

[7]
Steep and deep: Terrain and climate factors explain brown bear (Ursus arctos) alpine den site selection to guide heli-skiing management.

PLoS One. 2020-9-23

[8]
Grizzly Bear Noninvasive Genetic Tagging Surveys: Estimating the Magnitude of Missed Detections.

PLoS One. 2016-9-7

[9]
Precision and bias of spatial capture-recapture estimates: A multi-site, multi-year Utah black bear case study.

Ecol Appl. 2022-7

[10]
Improving inference for aerial surveys of bears: The importance of assumptions and the cost of unnecessary complexity.

Ecol Evol. 2017-5-25

引用本文的文献

[1]
Dracula's Menagerie Reloaded: Assessing the Relative Roles of Habitat and Interspecific Interactions in an Intact Mammalian Assemblage Using Structural Equation Modeling.

Ecol Evol. 2025-4-25

[2]
Joint inference for telemetry and spatial survey data.

Ecology. 2024-12

[3]
Estimating distribution and abundance of wide-ranging species with integrated spatial models: Opportunities revealed by the first wolf assessment in south-central Italy.

Ecol Evol. 2024-5-13

[4]
Living with Bears in Prahova Valley, Romania: An Integrative Analysis.

Animals (Basel). 2024-2-10

[5]
Sharing detection heterogeneity information among species in community models of occupancy and abundance can strengthen inference.

Ecol Evol. 2021-12-7

[6]
Toward reliable population estimates of wolves by combining spatial capture-recapture models and non-invasive DNA monitoring.

Sci Rep. 2018-2-1

本文引用的文献

[1]
Rapid declines of large mammal populations after the collapse of the Soviet Union.

Conserv Biol. 2015-6

[2]
Recovery of large carnivores in Europe's modern human-dominated landscapes.

Science. 2014-12-19

[3]
Testing the consistency of wildlife data types before combining them: the case of camera traps and telemetry.

Ecol Evol. 2014-2-24

[4]
Status and ecological effects of the world's largest carnivores.

Science. 2014-1-10

[5]
Confronting uncertainty in wildlife management: performance of grizzly bear management.

PLoS One. 2013-11-6

[6]
Density estimation in tiger populations: combining information for strong inference.

Ecology. 2012-7

[7]
Monitoring the effective population size of a brown bear (Ursus arctos) population using new single-sample approaches.

Mol Ecol. 2012-1-9

[8]
A review of financial instruments to pay for predator conservation and encourage human-carnivore coexistence.

Proc Natl Acad Sci U S A. 2011-8-22

[9]
Effects of trophy hunting on lion and leopard populations in Tanzania.

Conserv Biol. 2010-9-2

[10]
Tigers on trails: occupancy modeling for cluster sampling.

Ecol Appl. 2010-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索