Suppr超能文献

在合并野生动物数据类型之前测试其一致性:以相机陷阱和遥测为例。

Testing the consistency of wildlife data types before combining them: the case of camera traps and telemetry.

机构信息

Department of Environmental Science, Policy and Management, University of California Berkeley 130 Mulford Hall #3114, Berkeley, California, 94720-3114.

出版信息

Ecol Evol. 2014 Apr;4(7):933-43. doi: 10.1002/ece3.997. Epub 2014 Feb 24.

Abstract

Wildlife data gathered by different monitoring techniques are often combined to estimate animal density. However, methods to check whether different types of data provide consistent information (i.e., can information from one data type be used to predict responses in the other?) before combining them are lacking. We used generalized linear models and generalized linear mixed-effects models to relate camera trap probabilities for marked animals to independent space use from telemetry relocations using 2 years of data for fishers (Pekania pennanti) as a case study. We evaluated (1) camera trap efficacy by estimating how camera detection probabilities are related to nearby telemetry relocations and (2) whether home range utilization density estimated from telemetry data adequately predicts camera detection probabilities, which would indicate consistency of the two data types. The number of telemetry relocations within 250 and 500 m from camera traps predicted detection probability well. For the same number of relocations, females were more likely to be detected during the first year. During the second year, all fishers were more likely to be detected during the fall/winter season. Models predicting camera detection probability and photo counts solely from telemetry utilization density had the best or nearly best Akaike Information Criterion (AIC), suggesting that telemetry and camera traps provide consistent information on space use. Given the same utilization density, males were more likely to be photo-captured due to larger home ranges and higher movement rates. Although methods that combine data types (spatially explicit capture-recapture) make simple assumptions about home range shapes, it is reasonable to conclude that in our case, camera trap data do reflect space use in a manner consistent with telemetry data. However, differences between the 2 years of data suggest that camera efficacy is not fully consistent across ecological conditions and make the case for integrating other sources of space-use data.

摘要

野生动物数据通常通过不同的监测技术收集,然后结合这些数据来估计动物密度。然而,在将这些数据结合之前,缺乏检查不同类型的数据是否提供一致信息(即,一种数据类型的信息是否可用于预测另一种数据类型的反应?)的方法。我们使用广义线性模型和广义线性混合效应模型,以 2 年的渔貂(Pekania pennanti)数据为例,将标记动物的相机陷阱概率与来自遥测定位的独立空间利用相关联。我们评估了(1)通过估计相机检测概率与附近遥测定位的关系来评估相机效率;(2)来自遥测数据的家域利用密度是否可以充分预测相机检测概率,这将表明两种数据类型的一致性。距相机陷阱 250 和 500 m 内的遥测定位数量可以很好地预测检测概率。对于相同数量的定位,雌性在第一年更有可能被检测到。在第二年,所有渔貂在秋季/冬季更有可能被检测到。仅从遥测利用密度预测相机检测概率和照片数量的模型具有最佳或接近最佳的 Akaike 信息准则(AIC),这表明遥测和相机陷阱提供了一致的空间利用信息。在相同的利用密度下,由于较大的家域和较高的移动速度,雄性更有可能被拍摄到照片。尽管结合数据类型(空间显式捕获-再捕获)的方法对家域形状做出了简单的假设,但可以合理地得出结论,在我们的案例中,相机陷阱数据以与遥测数据一致的方式反映了空间利用。然而,2 年数据之间的差异表明,相机效率在生态条件下并不完全一致,这使得整合其他来源的空间利用数据成为必要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c00b/3997311/20df00642afb/ece30004-0933-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验