Duan Qiangde, Lee Kuo Hao, Nandre Rahul M, Garcia Carolina, Chen Jianhan, Zhang Weiping
Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA.
Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA.
J Vaccines Vaccin. 2017 Aug;8(4). doi: 10.4172/2157-7560.1000367. Epub 2017 Aug 24.
Vaccine development often encounters the challenge of virulence heterogeneity. Enterotoxigenic (ETEC) bacteria producing immunologically heterogeneous virulence factors are a leading cause of children's diarrhea and travelers' diarrhea. Currently, we do not have licensed vaccines against ETEC bacteria. While conventional methods continue to make progress but encounter challenge, new computational and structure-based approaches are explored to accelerate ETEC vaccine development. In this study, we applied a structural vaccinology concept to construct a structure-based multiepitope fusion antigen (MEFA) to carry representing epitopes of the seven most important ETEC adhesins [CFA/I, CFA/II (CS1-CS3), CFA/IV (CS4-CS6)], simulated antigenic structure of the CFA/I/II/IV MEFA with computational atomistic modeling and simulation, characterized immunogenicity in mouse immunization, and examined the potential of structure-informed vaccine design for ETEC vaccine development. A tag-less recombinant MEFA protein (CFA/I/II/IV MEFA) was effectively expressed and extracted. Molecular dynamics simulations indicated that this MEFA immunogen maintained a stable secondary structure and presented epitopes on the protein surface. Empirical data showed that mice immunized with the tagless CFA/I/II/IV MEFA developed strong antigen-specific antibody responses, and mouse serum antibodies significantly inhibited adherence of bacteria expressing these seven adhesins. These results revealed congruence of antigen immunogenicity between computational simulation and empirical mouse immunization and indicated this tag-less CFA/I/II/IV MEFA potentially an antigen for a broadly protective ETEC vaccine, suggesting a potential application of MEFA-based structural vaccinology for vaccine design against ETEC and likely other pathogens.
疫苗研发常常面临毒力异质性的挑战。产肠毒素大肠杆菌(ETEC)产生具有免疫异质性的毒力因子,是儿童腹泻和旅行者腹泻的主要病因。目前,我们还没有针对ETEC细菌的许可疫苗。虽然传统方法不断取得进展但也遇到挑战,人们正在探索新的基于计算和结构的方法来加速ETEC疫苗的研发。在本研究中,我们应用结构疫苗学概念构建了一种基于结构的多表位融合抗原(MEFA),以携带七种最重要的ETEC黏附素的代表性表位[CFA/I、CFA/II(CS1-CS3)、CFA/IV(CS4-CS6)],通过计算原子模型和模拟来模拟CFA/I/II/IV MEFA的抗原结构,在小鼠免疫中表征其免疫原性,并研究结构导向疫苗设计在ETEC疫苗研发中的潜力。一种无标签的重组MEFA蛋白(CFA/I/II/IV MEFA)被有效表达和提取。分子动力学模拟表明,这种MEFA免疫原保持了稳定的二级结构,并在蛋白质表面呈现表位。实验数据表明,用无标签的CFA/I/II/IV MEFA免疫的小鼠产生了强烈的抗原特异性抗体反应,并且小鼠血清抗体显著抑制了表达这七种黏附素的细菌的黏附。这些结果揭示了计算模拟和小鼠免疫实验之间抗原免疫原性的一致性,并表明这种无标签的CFA/I/II/IV MEFA可能是一种具有广泛保护作用的ETEC疫苗的抗原,这表明基于MEFA的结构疫苗学在针对ETEC及可能的其他病原体的疫苗设计中具有潜在应用价值。