Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
Computational Chemistry and Molecular Biophysics Unit, National Institute of Health/National Institute on Drug Abuse, Baltimore, MD, USA.
Methods Mol Biol. 2022;2414:151-169. doi: 10.1007/978-1-0716-1900-1_10.
Vaccines are regarded as the most cost-effective countermeasure against infectious diseases. One challenge often affecting vaccine development is antigenic diversity or pathogen heterogeneity. Different strains produce immunologically heterogeneous virulence factors, therefore an effective vaccine needs to induce broad-spectrum host immunity to provide cross-protection. Recent advances in genomics and proteomics, particularly computational biology and structural biology, establishes structural vaccinology and highlights the feasibility of developing effective and precision vaccines. Here, we introduce the epitope- and structure-based vaccinology platform multiepitope-fusion-antigen (MEFA), and provide instructions to generate polyvalent MEFA immunogens for vaccine development. Conceptually, MEFA combines epitope vaccinology and structural vaccinology to enable a protein immunogen to present heterogeneous antigenic domains (epitopes) and to induce broadly protective immunity against different virulence factors, strains or diseases. Methodologically, the MEFA platform first identifies a safe, structurally stable and strongly immunogenic backbone protein and immunodominant (ideally neutralizing or protective) epitopes from heterogeneous strains or virulence factors of interest. Then, assisted with protein modeling and molecule dynamic simulation, MEFA integrates heterogeneous epitopes into a backbone protein via epitope substitution for a polyvalent MEFA protein and mimics epitope native antigenicity. Finally, the MEFA protein is examined for broad immunogenicity in animal immunization, and assessed for potential application for multivalent vaccine development in preclinical studies.
疫苗被认为是对抗传染病最具成本效益的对策。影响疫苗开发的一个挑战通常是抗原多样性或病原体异质性。不同的菌株产生免疫上不同的毒力因子,因此有效的疫苗需要诱导广谱宿主免疫以提供交叉保护。基因组学和蛋白质组学的最新进展,特别是计算生物学和结构生物学,建立了结构疫苗学,并强调了开发有效和精准疫苗的可行性。在这里,我们介绍了基于表位和结构的疫苗学平台多表位融合抗原(MEFA),并提供了生成多价 MEFA 免疫原以用于疫苗开发的说明。从概念上讲,MEFA 将表位疫苗学和结构疫苗学结合起来,使蛋白质免疫原能够呈现异质的抗原域(表位),并诱导针对不同毒力因子、菌株或疾病的广泛保护性免疫。从方法论上讲,MEFA 平台首先从感兴趣的异质菌株或毒力因子中识别出安全、结构稳定且具有强免疫原性的骨架蛋白和免疫优势(理想情况下是中和或保护性)表位。然后,借助蛋白质建模和分子动力学模拟,MEFA 通过表位取代将异质表位整合到骨架蛋白中,形成多价 MEFA 蛋白,并模拟表位的天然抗原性。最后,在动物免疫中检查 MEFA 蛋白的广泛免疫原性,并在临床前研究中评估其用于多价疫苗开发的潜力。
Appl Environ Microbiol. 2019-5-16
Appl Environ Microbiol. 2022-8-9
Appl Environ Microbiol. 2024-8-21
Proc Natl Acad Sci U S A. 2022-12-13
Gut Microbes. 2020-11-1
Appl Environ Microbiol. 2019-5-16
Animal Model Exp Med. 2018-7-28
Nucleic Acids Res. 2019-1-8