Department of Geosciences, 510 Deike Building, Pennsylvania State University, University Park, PA 16802, U.S.A.
Department of Biology, Centre College, 600 West Walnut Street, Danville, KY 40422, U.S.A.
Biol Rev Camb Philos Soc. 2018 May;93(2):811-826. doi: 10.1111/brv.12368. Epub 2017 Sep 24.
Hierarchy theory recognises that ecological and evolutionary units occur in a nested and interconnected hierarchical system, with cascading effects occurring between hierarchical levels. Different biological disciplines have routinely come into conflict over the primacy of different forcing mechanisms behind evolutionary and ecological change. These disconnects arise partly from differences in perspective (with some researchers favouring ecological forcing mechanisms while others favour developmental/historical mechanisms), as well as differences in the temporal framework in which workers operate. In particular, long-term palaeontological data often show that large-scale (macro) patterns of evolution are predominantly dictated by shifts in the abiotic environment, while short-term (micro) modern biological studies stress the importance of biotic interactions. We propose that thinking about ecological and evolutionary interactions in a hierarchical framework is a fruitful way to resolve these conflicts. Hierarchy theory suggests that changes occurring at lower hierarchical levels can have unexpected, complex effects at higher scales due to emergent interactions between simple systems. In this way, patterns occurring on short- and long-term time scales are equally valid, as changes that are driven from lower levels will manifest in different forms at higher levels. We propose that the dual hierarchy framework fits well with our current understanding of evolutionary and ecological theory. Furthermore, we describe how this framework can be used to understand major extinction events better. Multi-generational attritional loss of reproductive fitness (MALF) has recently been proposed as the primary mechanism behind extinction events, whereby extinction is explainable solely through processes that result in extirpation of populations through a shutdown of reproduction. While not necessarily explicit, the push to explain extinction through solely population-level dynamics could be used to suggest that environmentally mediated patterns of extinction or slowed speciation across geological time are largely artefacts of poor preservation or a coarse temporal scale. We demonstrate how MALF fits into a hierarchical framework, showing that MALF can be a primary forcing mechanism at lower scales that still results in differential survivorship patterns at the species and clade level which vary depending upon the initial environmental forcing mechanism. Thus, even if MALF is the primary mechanism of extinction across all mass extinction events, the primary environmental cause of these events will still affect the system and result in differential responses. Therefore, patterns at both temporal scales are relevant.
层次理论认识到,生态和进化单位存在于嵌套和相互关联的层次系统中,不同层次之间存在级联效应。不同的生物学学科经常在进化和生态变化背后的主要驱动力问题上发生冲突。这些分歧部分源于视角的差异(一些研究人员倾向于生态驱动机制,而另一些研究人员则倾向于发展/历史机制),以及工作者所采用的时间框架的差异。特别是,长期古生物学数据通常表明,大规模(宏观)进化模式主要由生物环境的变化决定,而短期(微观)现代生物学研究则强调生物相互作用的重要性。我们提出,在层次框架中思考生态和进化相互作用是解决这些冲突的一种富有成效的方法。层次理论表明,由于简单系统之间的新兴相互作用,较低层次发生的变化可能会在较高尺度上产生意想不到的复杂影响。通过这种方式,短期和长期时间尺度上的模式同样有效,因为较低层次驱动的变化将以不同的形式在较高层次上显现。我们提出,双重层次框架与我们目前对进化和生态理论的理解非常吻合。此外,我们还描述了如何使用该框架更好地理解主要灭绝事件。最近提出,多代生殖适应性损失(MALF)是灭绝事件的主要机制,通过这种机制,灭绝可以仅通过导致种群灭绝的过程来解释,从而导致繁殖停止。虽然不一定明确,但通过种群水平动态来解释灭绝的推动力可以用来表明,地质时间内环境介导的灭绝模式或减缓的物种形成在很大程度上是保存不良或时间尺度粗糙的人为产物。我们展示了 MALF 如何适应层次框架,表明 MALF 可以是较低层次的主要驱动机制,但仍会导致物种和进化枝水平上的差异生存模式,这些模式因初始环境驱动机制而异。因此,即使 MALF 是所有大规模灭绝事件的主要灭绝机制,这些事件的主要环境原因仍将影响系统并导致不同的反应。因此,两个时间尺度上的模式都是相关的。