Suppr超能文献

用于预测犬脑膜瘤组织学分级的磁共振图像纹理分析

Texture analysis of magnetic resonance images to predict histologic grade of meningiomas in dogs.

作者信息

Banzato Tommaso, Bernardini Marco, Cherubini Giunio B, Zotti Alessandro

出版信息

Am J Vet Res. 2017 Oct;78(10):1156-1162. doi: 10.2460/ajvr.78.10.1156.

Abstract

OBJECTIVE To predict histologic grade of meningiomas in dogs via texture analysis (TA) of MRI scans of the brain and spinal cord. SAMPLE 58 sets of MRI scans of the brain and spinal cord of dogs with histologically diagnosed meningioma. PROCEDURES MRI sequences were divided into a training set and a test set, and results of histologic assessment were obtained. Tumors were histologically grouped as benign (stage I) or atypical-anaplastic (stage II or III). Texture analysis was performed by use of specialized software on T2-weighted (T2W) and pre- and postcontrast T1-weighted (T1W) images. A set of 30 texture features that provided the highest discriminating power between the 2 histologic classes in the training set was automatically selected by the TA software. Linear discriminant analysis was performed, and the most discriminant factor (MDF) was calculated. The previously selected texture features were then used for linear discriminant analysis of the test set data, and the MDF was calculated. RESULTS For the training set, TA of precontrast T1W images provided the best diagnostic accuracy; a cutoff MDF of < 0.0057 resulted in a sensitivity of 97.4% and specificity of 95.0% for discriminating benign from atypical-anaplastic meningiomas. Use of postcontrast T1W and T2W images yielded poorer diagnostic performances. Application of the MDF cutoff calculated with the training set to the MDF calculated with the test set provided a correct classification rate of 96.8% for precontrast T1W images, 92.0% for postcontrast T1W images, and 78.9% for T2W images. CONCLUSIONS AND CLINICAL RELEVANCE Findings supported the potential clinical usefulness of TA of MRI scans for the grading of meningiomas in dogs.

摘要

目的 通过对犬脑和脊髓的磁共振成像(MRI)扫描进行纹理分析(TA)来预测犬脑膜瘤的组织学分级。样本 58 组经组织学诊断为脑膜瘤的犬脑和脊髓的 MRI 扫描图像。方法 将 MRI 序列分为训练集和测试集,并获得组织学评估结果。肿瘤在组织学上分为良性(I 期)或非典型 - 间变性(II 期或 III 期)。使用专门软件对 T2 加权(T2W)以及对比剂注射前后的 T1 加权(T1W)图像进行纹理分析。TA 软件自动选择了一组在训练集中对两种组织学类别具有最高区分能力的 30 个纹理特征。进行线性判别分析,并计算最具判别力的因子(MDF)。然后将先前选择的纹理特征用于测试集数据的线性判别分析,并计算 MDF。结果 对于训练集,对比剂注射前 T1W 图像的 TA 提供了最佳诊断准确性;区分良性与非典型 - 间变性脑膜瘤时,MDF 临界值 < 0.0057 时,敏感性为 97.4%,特异性为 95.0%。使用对比剂注射后 T1W 和 T2W 图像的诊断性能较差。将训练集计算出的 MDF 临界值应用于测试集计算出的 MDF,对比剂注射前 T1W 图像的正确分类率为 96.8%,对比剂注射后 T1W 图像为 92.0%,T2W 图像为 78.9%。结论及临床意义 研究结果支持了 MRI 扫描纹理分析在犬脑膜瘤分级方面的潜在临床应用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验