Suppr超能文献

深度学习在磁共振成像上对脑膜瘤组织病理学分级的鉴别准确性:一项初步研究。

Accuracy of deep learning to differentiate the histopathological grading of meningiomas on MR images: A preliminary study.

机构信息

Department of Animal Medicine, Productions and Health, University of Padua, Legnaro, Italy.

Neuroradiology Unit, Padua University Hospital, Padova, Italy.

出版信息

J Magn Reson Imaging. 2019 Oct;50(4):1152-1159. doi: 10.1002/jmri.26723. Epub 2019 Mar 21.

Abstract

BACKGROUND

Grading of meningiomas is important in the choice of the most effective treatment for each patient.

PURPOSE

To determine the diagnostic accuracy of a deep convolutional neural network (DCNN) in the differentiation of the histopathological grading of meningiomas from MR images.

STUDY TYPE

Retrospective.

POPULATION

In all, 117 meningioma-affected patients, 79 World Health Organization [WHO] Grade I, 32 WHO Grade II, and 6 WHO Grade III.

FIELD STRENGTH/SEQUENCE: 1.5 T, 3.0 T postcontrast enhanced T W (PCT W), apparent diffusion coefficient (ADC) maps (b values of 0, 500, and 1000 s/mm ).

ASSESSMENT

WHO Grade II and WHO Grade III meningiomas were considered a single category. The diagnostic accuracy of the pretrained Inception-V3 and AlexNet DCNNs was tested on ADC maps and PCT W images separately. Receiver operating characteristic curves (ROC) and area under the curve (AUC) were used to asses DCNN performance.

STATISTICAL TEST

Leave-one-out cross-validation.

RESULTS

The application of the Inception-V3 DCNN on ADC maps provided the best diagnostic accuracy results, with an AUC of 0.94 (95% confidence interval [CI], 0.88-0.98). Remarkably, only 1/38 WHO Grade II-III and 7/79 WHO Grade I lesions were misclassified by this model. The application of AlexNet on ADC maps had a low discriminating accuracy, with an AUC of 0.68 (95% CI, 0.59-0.76) and a high misclassification rate on both WHO Grade I and WHO Grade II-III cases. The discriminating accuracy of both DCNNs on postcontrast T W images was low, with Inception-V3 displaying an AUC of 0.68 (95% CI, 0.59-0.76) and AlexNet displaying an AUC of 0.55 (95% CI, 0.45-0.64).

DATA CONCLUSION

DCNNs can accurately discriminate between benign and atypical/anaplastic meningiomas from ADC maps but not from PCT W images.

LEVEL OF EVIDENCE

2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:1152-1159.

摘要

背景

在为每位患者选择最有效的治疗方法时,对脑膜瘤进行分级很重要。

目的

确定深度卷积神经网络(DCNN)在从磁共振图像中区分脑膜瘤的组织病理学分级方面的诊断准确性。

研究类型

回顾性。

人群

共有 117 名脑膜瘤患者,79 名世界卫生组织(WHO)I 级,32 名 WHO II 级,6 名 WHO III 级。

磁场强度/序列:1.5T,3.0T 对比增强 T W(PCT W),表观扩散系数(ADC)图(b 值为 0、500 和 1000 s/mm )。

评估

将 WHO II 级和 WHO III 级脑膜瘤视为单一类别。分别在 ADC 图和 PCT W 图像上测试预先训练的 Inception-V3 和 AlexNet DCNN 的诊断准确性。使用受试者工作特征曲线(ROC)和曲线下面积(AUC)评估 DCNN 性能。

统计检验

留一交叉验证。

结果

在 ADC 图上应用 Inception-V3 DCNN 提供了最佳的诊断准确性结果,AUC 为 0.94(95%置信区间[CI],0.88-0.98)。值得注意的是,只有 1/38 的 WHO II-III 级和 7/79 的 WHO I 级病变被该模型错误分类。AlexNet 在 ADC 图上的应用具有较低的鉴别准确性,AUC 为 0.68(95%CI,0.59-0.76),对 WHO I 级和 WHO II-III 级病例的分类错误率较高。两种 DCNN 在对比后 T W 图像上的鉴别准确性均较低,Inception-V3 的 AUC 为 0.68(95%CI,0.59-0.76),AlexNet 的 AUC 为 0.55(95%CI,0.45-0.64)。

数据结论

DCNN 可以从 ADC 图中准确区分良性和非典型/间变性脑膜瘤,但不能从 PCT W 图像中区分。

证据水平

2 技术功效:第 2 阶段 J. Magn. Reson. Imaging 2019;50:1152-1159。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4b3/6767062/147b5bc3eda1/JMRI-50-1152-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验