Suppr超能文献

自动加权多视图学习在图像聚类和半监督分类中的应用。

Auto-Weighted Multi-View Learning for Image Clustering and Semi-Supervised Classification.

出版信息

IEEE Trans Image Process. 2018 Mar;27(3):1501-1511. doi: 10.1109/TIP.2017.2754939. Epub 2017 Sep 20.

Abstract

Due to the efficiency of learning relationships and complex structures hidden in data, graph-oriented methods have been widely investigated and achieve promising performance. Generally, in the field of multi-view learning, these algorithms construct informative graph for each view, on which the following clustering or classification procedure are based. However, in many real-world data sets, original data always contain noises and outlying entries that result in unreliable and inaccurate graphs, which cannot be ameliorated in the previous methods. In this paper, we propose a novel multi-view learning model which performs clustering/semi-supervised classification and local structure learning simultaneously. The obtained optimal graph can be partitioned into specific clusters directly. Moreover, our model can allocate ideal weight for each view automatically without explicit weight definition and penalty parameters. An efficient algorithm is proposed to optimize this model. Extensive experimental results on different real-world data sets show that the proposed model outperforms other state-of-the-art multi-view algorithms.

摘要

由于学习关系和数据中隐藏的复杂结构的效率,基于图的方法得到了广泛的研究,并取得了有希望的性能。一般来说,在多视图学习领域,这些算法为每个视图构建信息图,基于该图进行聚类或分类。然而,在许多实际数据集上,原始数据通常包含噪声和异常条目,这导致不可靠和不准确的图,而以前的方法无法改进这些图。在本文中,我们提出了一种新的多视图学习模型,该模型同时进行聚类/半监督分类和局部结构学习。获得的最优图可以直接划分为特定的簇。此外,我们的模型可以自动分配每个视图的理想权重,而无需显式的权重定义和惩罚参数。提出了一种有效的算法来优化这个模型。在不同的真实数据集上的广泛实验结果表明,所提出的模型优于其他最先进的多视图算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验