Suppr超能文献

多模态磁共振序列中基于协同字典学习模型的鼻咽癌分割

A Collaborative Dictionary Learning Model for Nasopharyngeal Carcinoma Segmentation on Multimodalities MR Sequences.

机构信息

School of Computer Science and Engineering, South China University of Technology, 510000, China.

Department of Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 Guangdong, China.

出版信息

Comput Math Methods Med. 2020 Aug 28;2020:7562140. doi: 10.1155/2020/7562140. eCollection 2020.

Abstract

Nasopharyngeal carcinoma (NPC) is the most common malignant tumor of the nasopharynx. The delicate nature of the nasopharyngeal structures means that noninvasive magnetic resonance imaging (MRI) is the preferred diagnostic technique for NPC. However, NPC is a typically infiltrative tumor, usually with a small volume, and thus, it remains challenging to discriminate it from tightly connected surrounding tissues. To address this issue, this study proposes a voxel-wise discriminate method for locating and segmenting NPC from normal tissues in MRI sequences. The located NPC is refined to obtain its accurate segmentation results by an original multiviewed collaborative dictionary classification (CODL) model. The proposed CODL reconstructs a latent intact space and equips it with discriminative power for the collective multiview analysis task. Experiments on synthetic data demonstrate that CODL is capable of finding a discriminative space for multiview orthogonal data. We then evaluated the method on real NPC. Experimental results show that CODL could accurately discriminate and localize NPCs of different volumes. This method achieved superior performances in segmenting NPC compared with benchmark methods. Robust segmentation results show that CODL can effectively assist clinicians in locating NPC.

摘要

鼻咽癌(NPC)是鼻咽部最常见的恶性肿瘤。由于鼻咽部结构精细,因此非侵入性磁共振成像(MRI)是 NPC 的首选诊断技术。然而,NPC 是一种典型的浸润性肿瘤,通常体积较小,因此仍然难以将其与紧密相连的周围组织区分开来。针对这一问题,本研究提出了一种基于体素的方法,用于从 MRI 序列中定位和分割 NPC 与正常组织。通过原始的多视图协作字典分类(CODL)模型对定位的 NPC 进行细化,以获得其准确的分割结果。所提出的 CODL 构建了一个潜在的完整空间,并为集体多视图分析任务配备了判别能力。在合成数据上的实验表明,CODL 能够为多视图正交数据找到一个有判别力的空间。然后,我们在真实的 NPC 上评估了该方法。实验结果表明,CODL 可以准确地对不同体积的 NPC 进行区分和定位。与基准方法相比,该方法在 NPC 分割方面表现出了优异的性能。稳健的分割结果表明,CODL 可以有效地帮助临床医生定位 NPC。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ade/7474760/4febaad3af68/CMMM2020-7562140.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验