Suppr超能文献

用于具有重叠激发和发射光谱的荧光团生物光谱解混的多视图机器学习框架

A Framework of Multi-View Machine Learning for Biological Spectral Unmixing of Fluorophores with Overlapping Excitation and Emission Spectra.

作者信息

Wang Ruogu, Feng Yunlong, Valm Alex M

机构信息

Department of Biology, University at Albany, SUNY, 1400 Washington Ave, 12222, NY, USA.

RNA Institute, University at Albany, SUNY, 1400 Washington Ave, 12222, NY, USA.

出版信息

bioRxiv. 2024 Aug 9:2024.08.07.607102. doi: 10.1101/2024.08.07.607102.

Abstract

The accuracy in assigning fluorophore identity and abundance, termed spectral unmixing, in biological fluorescence microscopy images remains challenging due to the unavoidable and significant overlap in emission spectra among fluorophores. In conventional laser scanning confocal spectral microscopy, fluorophore information is acquired by recording emission spectra with a single combination of discrete excitation wavelengths. As a matter of fact, organic fluorophores have not only unique emission spectral signatures but also have unique and characteristic excitation spectra. In this paper, we propose a generalized multi-view machine learning approach, which makes use of both excitation and emission spectra to greatly improve the accuracy in differentiating multiple highly overlapping fluorophores in a single image. By recording emission spectra of the same field with multiple combinations of excitation wavelengths, we obtain data representing these different views of the underlying fluorophore distribution in the sample. We then propose a framework of multi-view machine learning methods, which allows us to flexibly incorporate noise information and abundance constraints, to extract the spectral signatures of fluorophores from their reference images and to efficiently recover their corresponding abundances in unknown mixed images. Numerical experiments on simulated image data demonstrate the method's efficacy in improving accuracy, allowing for the discrimination of 100 fluorophores with highly overlapping spectra. Furthermore, validation on images of mixtures of fluorescently labeled E. coli demonstrates the power of the proposed multi-view strategy in discriminating fluorophores with spectral overlap in real biological images.

摘要

在生物荧光显微镜图像中,确定荧光团的身份和丰度(即光谱解混)的准确性仍然具有挑战性,这是因为荧光团之间的发射光谱存在不可避免且显著的重叠。在传统的激光扫描共聚焦光谱显微镜中,通过用离散激发波长的单一组合记录发射光谱来获取荧光团信息。事实上,有机荧光团不仅具有独特的发射光谱特征,还具有独特且典型的激发光谱。在本文中,我们提出了一种广义的多视图机器学习方法,该方法利用激发光谱和发射光谱来极大地提高在单个图像中区分多个高度重叠荧光团的准确性。通过用多种激发波长组合记录同一场景的发射光谱,我们获得了表示样品中潜在荧光团分布的这些不同视图的数据。然后,我们提出了一个多视图机器学习方法框架,该框架允许我们灵活地纳入噪声信息和丰度约束,从其参考图像中提取荧光团的光谱特征,并在未知混合图像中有效地恢复它们相应的丰度。对模拟图像数据的数值实验证明了该方法在提高准确性方面的有效性,能够区分具有高度重叠光谱的100种荧光团。此外,对荧光标记大肠杆菌混合物图像的验证证明了所提出的多视图策略在区分真实生物图像中具有光谱重叠的荧光团方面的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0343/11326303/3cefc5247d12/nihpp-2024.08.07.607102v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验