Suppr超能文献

一种由生物启发的 N O 大环配体稳定的高反应性氧代铁(IV)配合物。

A Highly Reactive Oxoiron(IV) Complex Supported by a Bioinspired N O Macrocyclic Ligand.

机构信息

Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany.

Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea.

出版信息

Angew Chem Int Ed Engl. 2017 Nov 13;56(46):14384-14388. doi: 10.1002/anie.201707872. Epub 2017 Oct 17.

Abstract

The sluggish oxidants [Fe (O)(TMC)(CH CN)] (TMC=1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) and [Fe (O)(TMCN-d )(OTf)] (TMCN-d =1,4,7,11-tetra(methyl-d )-1,4,7,11-tetraazacyclotetradecane) are transformed into the highly reactive oxidant [Fe (O)(TMCO)(OTf)] (1; TMCO=4,8,12-trimethyl-1-oxa-4,8,12-triazacyclotetradecane) upon replacement of an NMe donor in the TMC and TMCN ligands by an O atom. A rate enhancement of five to six orders of magnitude in both H atom and O atom transfer reactions was observed upon oxygen incorporation into the macrocyclic ligand. This finding was explained in terms of the higher electrophilicity of the iron center and the higher availability of the more reactive S=2 state in 1. This rationalizes nature's preference for using O-rich ligand environments for the hydroxylation of strong C-H bonds in enzymatic reactions.

摘要

sluggish 氧化剂 [Fe (O)(TMC)(CH CN)](TMC=1,4,8,11-四甲基-1,4,8,11-四氮杂环十四烷)和 [Fe (O)(TMCN-d)(OTf)](TMCN-d=1,4,7,11-四(甲基-d)-1,4,7,11-四氮杂环十四烷)在 TMC 和 TMCN 配体中的 NMe 供体被 O 原子取代后,转化为高反应性氧化剂 [Fe (O)(TMCO)(OTf)](1;TMCO=4,8,12-三甲基-1-氧杂-4,8,12-三氮杂环十四烷)。在大环配体中引入氧原子后,观察到 H 原子和 O 原子转移反应的速率提高了五个到六个数量级。这一发现可以用铁中心的更高电负性和 1 中更具反应性的 S=2 态的更高可用性来解释。这就解释了自然界为什么更喜欢在酶反应中使用富氧配体环境来氧化强 C-H 键。

相似文献

1
A Highly Reactive Oxoiron(IV) Complex Supported by a Bioinspired N O Macrocyclic Ligand.
Angew Chem Int Ed Engl. 2017 Nov 13;56(46):14384-14388. doi: 10.1002/anie.201707872. Epub 2017 Oct 17.
3
Axial ligand effects on the geometric and electronic structures of nonheme oxoiron(IV) complexes.
J Am Chem Soc. 2008 Sep 17;130(37):12394-407. doi: 10.1021/ja8022576. Epub 2008 Aug 20.
4
Intramolecular gas-phase reactions of synthetic nonheme oxoiron(IV) ions: proximity and spin-state reactivity rules.
Chemistry. 2012 Sep 10;18(37):11747-60. doi: 10.1002/chem.201200105. Epub 2012 Jul 26.
5
Spectroscopic and Reactivity Comparisons between Nonheme Oxoiron(IV) and Oxoiron(V) Species Bearing the Same Ancillary Ligand.
J Am Chem Soc. 2019 Sep 25;141(38):15078-15091. doi: 10.1021/jacs.9b05758. Epub 2019 Sep 11.
6
Oxoiron(IV) Complex of the Ethylene-Bridged Dialkylcyclam Ligand Me2EBC.
Inorg Chem. 2015 Aug 17;54(16):7828-39. doi: 10.1021/acs.inorgchem.5b00861. Epub 2015 Aug 5.
7
Axial ligand tuning of a nonheme iron(IV)-oxo unit for hydrogen atom abstraction.
Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19181-6. doi: 10.1073/pnas.0709471104. Epub 2007 Nov 28.
8
C-H Bond Cleavage by Bioinspired Nonheme Oxoiron(IV) Complexes, Including Hydroxylation of n-Butane.
Inorg Chem. 2015 Jun 1;54(11):5053-64. doi: 10.1021/ic502786y. Epub 2015 Mar 9.
9
Unmasking Steps in Intramolecular Aromatic Hydroxylation by a Synthetic Nonheme Oxoiron(IV) Complex.
Angew Chem Int Ed Engl. 2021 Sep 13;60(38):20991-20998. doi: 10.1002/anie.202108309. Epub 2021 Aug 11.
10
Oxygen Atom Exchange between H2O and Non-Heme Oxoiron(IV) Complexes: Ligand Dependence and Mechanism.
Inorg Chem. 2016 Jun 20;55(12):5818-27. doi: 10.1021/acs.inorgchem.6b00023. Epub 2016 Jun 8.

引用本文的文献

1
Preparation, Spectroscopic Characterization, and Reactivity of High-Valent Non-Oxo Co(IV) and Formally Co(V) Complexes.
JACS Au. 2025 Jul 15;5(7):3575-3588. doi: 10.1021/jacsau.5c00589. eCollection 2025 Jul 28.
3
Unraveling Chlorite Oxidation Pathways in Equatorially Heteroatom-Substituted Nonheme Iron Complexes.
ACS Org Inorg Au. 2024 Sep 20;4(6):673-680. doi: 10.1021/acsorginorgau.4c00045. eCollection 2024 Dec 4.
4
Enhanced Reactivities of Iron(IV)-Oxo Porphyrin Species in Oxidation Reactions Promoted by Intramolecular Hydrogen-Bonding.
Adv Sci (Weinh). 2024 May;11(19):e2310333. doi: 10.1002/advs.202310333. Epub 2024 Mar 13.
5
Characterization of a Ferryl Flip in Electronically Tuned Nonheme Complexes. Consequences in Hydrogen Atom Transfer Reactivity.
Angew Chem Int Ed Engl. 2023 Jan 9;62(2):e202211361. doi: 10.1002/anie.202211361. Epub 2022 Dec 2.
6
Heme compound II models in chemoselectivity and disproportionation reactions.
Chem Sci. 2022 Apr 12;13(19):5707-5717. doi: 10.1039/d2sc01232d. eCollection 2022 May 18.
7
New Strategies for Direct Methane-to-Methanol Conversion from Active Learning Exploration of 16 Million Catalysts.
JACS Au. 2022 Apr 27;2(5):1200-1213. doi: 10.1021/jacsau.2c00176. eCollection 2022 May 23.
9
C-H Bond Cleavage by Bioinspired Nonheme Metal Complexes.
Inorg Chem. 2021 Sep 20;60(18):13759-13783. doi: 10.1021/acs.inorgchem.1c01754. Epub 2021 Sep 7.
10
Semiempirical method for examining asynchronicity in metal-oxido-mediated C-H bond activation.
Proc Natl Acad Sci U S A. 2021 Sep 7;118(36). doi: 10.1073/pnas.2108648118.

本文引用的文献

2
Nonclassical Single-State Reactivity of an Oxo-Iron(IV) Complex Confined to Triplet Pathways.
J Am Chem Soc. 2017 Jul 5;139(26):8939-8949. doi: 10.1021/jacs.7b03255. Epub 2017 Jun 22.
3
Magnetic Circular Dichroism Evidence for an Unusual Electronic Structure of a Tetracarbene-Oxoiron(IV) Complex.
J Am Chem Soc. 2016 Nov 2;138(43):14312-14325. doi: 10.1021/jacs.6b07708. Epub 2016 Oct 21.
4
Oxidation Reactions with Bioinspired Mononuclear Non-Heme Metal-Oxo Complexes.
Angew Chem Int Ed Engl. 2016 Jun 27;55(27):7632-49. doi: 10.1002/anie.201600507. Epub 2016 Jun 16.
5
Toward the synthesis of more reactive S = 2 non-heme oxoiron(IV) complexes.
Acc Chem Res. 2015 Aug 18;48(8):2443-52. doi: 10.1021/acs.accounts.5b00244. Epub 2015 Jul 15.
6
Modeling TauD-J: a high-spin nonheme oxoiron(IV) complex with high reactivity toward C-H bonds.
J Am Chem Soc. 2015 Feb 25;137(7):2428-31. doi: 10.1021/ja511757j. Epub 2015 Feb 17.
7
Status of reactive non-heme metal-oxygen intermediates in chemical and enzymatic reactions.
J Am Chem Soc. 2014 Oct 8;136(40):13942-58. doi: 10.1021/ja507807v. Epub 2014 Sep 29.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验