Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455, USA.
Chemistry. 2012 Sep 10;18(37):11747-60. doi: 10.1002/chem.201200105. Epub 2012 Jul 26.
The intramolecular gas-phase reactivity of four oxoiron(IV) complexes supported by tetradentate N(4) ligands (L) has been studied by means of tandem mass spectrometry measurements in which the gas-phase ions Fe(IV)(O)(L)(OTf) (OTf = trifluoromethanesulfonate) and Fe(IV) (O)(L) were isolated and then allowed to fragment by collision-induced decay (CID). CID fragmentation of cations derived from oxoiron(IV) complexes of 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane (tmc) and N,N'-bis(2-pyridylmethyl)-1,5-diazacyclooctane (L(8)Py(2)) afforded the same predominant products irrespective of whether they were hexacoordinate or pentacoordinate. These products resulted from the loss of water by dehydrogenation of ethylene or propylene linkers on the tetradentate ligand. In contrast, CID fragmentation of ions derived from oxoiron(IV) complexes of linear tetradentate ligands N,N'-bis(2-pyridylmethyl)-1,2-diaminoethane (bpmen) and N,N'-bis(2-pyridylmethyl)-1,3-diaminopropane (bpmpn) showed predominant oxidative N-dealkylation for the hexacoordinate Fe(IV)(O)(L)(OTf) cations and predominant dehydrogenation of the diaminoethane/propane backbone for the pentacoordinate Fe(IV)(O)(L) cations. DFT calculations on [Fe(IV)(O)(bpmen)] ions showed that the experimentally observed preference for oxidative N-dealkylation versus dehydrogenation of the diaminoethane linker for the hexa- and pentacoordinate ions, respectively, is dictated by the proximity of the target C-H bond to the oxoiron(IV) moiety and the reactive spin state. Therefore, there must be a difference in ligand topology between the two ions. More importantly, despite the constraints on the geometries of the TS that prohibit the usual upright σ trajectory and prevent optimal σ(CH)-σ*(z2) overlap, all the reactions still proceed preferentially on the quintet (S = 2) state surface, which increases the number of exchange interactions in the d block of iron and leads thereby to exchange enhanced reactivity (EER). As such, EER is responsible for the dominance of the S = 2 reactions for both hexa- and pentacoordinate complexes.
四种四配位氮(N)四齿配体(L)支持的氧桥双核铁(IV)配合物的分子气相反应性已通过串联质谱测量进行研究,其中气相离子[Fe(IV)(O)(L)(OTf)]+(OTf = 三氟甲磺酸根)和[Fe(IV)(O)(L)] 2+被分离出来,然后通过碰撞诱导衰减(CID)使其碎裂。氧桥双核铁(IV)配合物的阳离子[Fe(IV)(O)(L)(OTf)]+(OTf = 三氟甲磺酸根)和[Fe(IV)(O)(L)] 2+的 CID 碎裂,无论它们是六配位还是五配位,都得到相同的主要产物。这些产物是由四齿配体上的乙烯或丙烯连接物脱氢而失去水形成的。相比之下,线型四齿配体 N,N'-双(2-吡啶甲基)-1,2-二氨基乙烷(bpmen)和 N,N'-双(2-吡啶甲基)-1,3-二氨基丙烷(bpmpn)的氧桥双核铁(IV)配合物的离子的 CID 碎裂显示,六配位[Fe(IV)(O)(L)(OTf)]+阳离子主要发生氧化 N-脱烷基化,而五配位[Fe(IV)(O)(L)] 2+阳离子主要发生二氨基乙烷/丙烷骨架脱氢。对[Fe(IV)(O)(bpmen)]离子的密度泛函理论(DFT)计算表明,实验观察到的六配位和五配位离子分别优先发生氧化 N-脱烷基化而非二氨基乙烷连接物脱氢,这是由目标 C-H 键与氧桥双核铁(IV)部分的接近程度和反应自旋态决定的。因此,两种离子的配体拓扑结构必须有所不同。更重要的是,尽管 TS 的几何形状限制了通常的直立 σ 轨迹并阻止了最佳 σ(CH)-σ*(z2)重叠,但所有反应仍然优先在 quintet(S = 2)状态表面上进行,这增加了铁 d 块中的交换相互作用的数量,从而导致交换增强的反应性(EER)。因此,EER 是六配位和五配位配合物中 S = 2 反应占主导地位的原因。