Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
Molecules. 2017 Sep 25;22(10):1574. doi: 10.3390/molecules22101574.
Less sedimentation and convection in a microgravity environment has become a well-suited condition for growing high quality protein crystals. Thermostable T1 lipase derived from bacterium has been crystallized using the counter diffusion method under space and earth conditions. Preliminary study using YASARA molecular modeling structure program for both structures showed differences in number of hydrogen bond, ionic interaction, and conformation. The space-grown crystal structure contains more hydrogen bonds as compared with the earth-grown crystal structure. A molecular dynamics simulation study was used to provide insight on the fluctuations and conformational changes of both T1 lipase structures. The analysis of root mean square deviation (RMSD), radius of gyration, and root mean square fluctuation (RMSF) showed that space-grown structure is more stable than the earth-grown structure. Space-structure also showed more hydrogen bonds and ion interactions compared to the earth-grown structure. Further analysis also revealed that the space-grown structure has long-lived interactions, hence it is considered as the more stable structure. This study provides the conformational dynamics of T1 lipase crystal structure grown in space and earth condition.
微重力环境中较少的沉淀和对流成为生长高质量蛋白质晶体的理想条件。来源于细菌的耐热 T1 脂肪酶已经使用扩散对向法在空间和地球条件下结晶。使用 YASARA 分子建模结构程序对两种结构进行的初步研究表明,氢键、离子相互作用和构象的数量存在差异。与在地球生长的晶体结构相比,空间生长的晶体结构含有更多的氢键。分子动力学模拟研究用于提供对两种 T1 脂肪酶结构波动和构象变化的深入了解。均方根偏差(RMSD)、回转半径和均方根波动(RMSF)的分析表明,空间生长的结构比在地球生长的结构更稳定。与在地球生长的结构相比,空间结构还显示出更多的氢键和离子相互作用。进一步的分析还表明,与在地球生长的结构相比,空间生长的结构具有更长寿命的相互作用,因此被认为是更稳定的结构。这项研究提供了在空间和地球条件下生长的 T1 脂肪酶晶体结构的构象动力学。