Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
PLoS One. 2021 Jun 1;16(6):e0251751. doi: 10.1371/journal.pone.0251751. eCollection 2021.
5M mutant lipase was derived through cumulative mutagenesis of amino acid residues (D43E/T118N/E226D/E250L/N304E) of T1 lipase from Geobacillus zalihae. A previous study revealed that cumulative mutations in 5M mutant lipase resulted in decreased thermostability compared to wild-type T1 lipase. Multiple amino acids substitution might cause structural destabilization due to negative cooperation. Hence, the three-dimensional structure of 5M mutant lipase was elucidated to determine the evolution in structural elements caused by amino acids substitution. A suitable crystal for X-ray diffraction was obtained from an optimized formulation containing 0.5 M sodium cacodylate trihydrate, 0.4 M sodium citrate tribasic pH 6.4 and 0.2 M sodium chloride with 2.5 mg/mL protein concentration. The three-dimensional structure of 5M mutant lipase was solved at 2.64 Å with two molecules per asymmetric unit. The detailed analysis of the structure revealed that there was a decrease in the number of molecular interactions, including hydrogen bonds and ion interactions, which are important in maintaining the stability of lipase. This study facilitates understanding of and highlights the importance of hydrogen bonds and ion interactions towards protein stability. Substrate specificity and docking analysis on the open structure of 5M mutant lipase revealed changes in substrate preference. The molecular dynamics simulation of 5M-substrates complexes validated the substrate preference of 5M lipase towards long-chain p-nitrophenyl-esters.
5M 突变脂肪酶是通过对扎氏芽孢杆菌 T1 脂肪酶的氨基酸残基(D43E/T118N/E226D/E250L/N304E)进行累积突变得到的。先前的研究表明,与野生型 T1 脂肪酶相比,5M 突变脂肪酶的累积突变导致其热稳定性降低。由于负协同作用,多个氨基酸取代可能导致结构失稳。因此,阐明了 5M 突变脂肪酶的三维结构,以确定由于氨基酸取代引起的结构元件的演变。从含有 0.5 M 二甲胂酸钠三水合物、0.4 M 柠檬酸三碱基 pH6.4 和 0.2 M 氯化钠的优化配方中获得了适合 X 射线衍射的晶体,蛋白浓度为 2.5mg/mL。5M 突变脂肪酶的三维结构在 2.64Å分辨率下解析,每个不对称单元有两个分子。结构的详细分析表明,分子相互作用的数量减少,包括氢键和离子相互作用,这些相互作用对于维持脂肪酶的稳定性很重要。本研究有助于理解氢键和离子相互作用对蛋白质稳定性的重要性。对 5M 突变脂肪酶开放结构的底物特异性和对接分析表明,底物偏好发生了变化。5M-底物复合物的分子动力学模拟验证了 5M 脂肪酶对长链对硝基苯酯的底物偏好。