Crollen Virginie, Lazzouni Latifa, Rezk Mohamed, Bellemare Antoine, Lepore Franco, Collignon Olivier
Centre for Mind/Brain Science, University of Trento, 38123 Mattarello TN, Italy,
Centre de Recherche en Neuropsychologie et Cognition (CERNEC), Université de Montréal, Montreal, Quebec H2V 2S9, Canada.
J Neurosci. 2017 Oct 18;37(42):10097-10103. doi: 10.1523/JNEUROSCI.1213-17.2017. Epub 2017 Sep 25.
Localizing touch relies on the activation of skin-based and externally defined spatial frames of reference. Psychophysical studies have demonstrated that early visual deprivation prevents the automatic remapping of touch into external space. We used fMRI to characterize how visual experience impacts the brain circuits dedicated to the spatial processing of touch. Sighted and congenitally blind humans performed a tactile temporal order judgment (TOJ) task, either with the hands uncrossed or crossed over the body midline. Behavioral data confirmed that crossing the hands has a detrimental effect on TOJ judgments in sighted but not in early blind people. Crucially, the crossed hand posture elicited enhanced activity, when compared with the uncrossed posture, in a frontoparietal network in the sighted group only. Psychophysiological interaction analysis revealed, however, that the congenitally blind showed enhanced functional connectivity between parietal and frontal regions in the crossed versus uncrossed hand postures. Our results demonstrate that visual experience scaffolds the neural implementation of the location of touch in space. In daily life, we seamlessly localize touch in external space for action planning toward a stimulus making contact with the body. For efficient sensorimotor integration, the brain has therefore to compute the current position of our limbs in the external world. In the present study, we demonstrate that early visual deprivation alters the brain activity in a dorsal parietofrontal network typically supporting touch localization in the sighted. Our results therefore conclusively demonstrate the intrinsic role that developmental vision plays in scaffolding the neural implementation of touch perception.
定位触觉依赖于基于皮肤和外部定义的空间参照系的激活。心理物理学研究表明,早期视觉剥夺会阻止触觉自动重新映射到外部空间。我们使用功能磁共振成像(fMRI)来描述视觉体验如何影响专门用于触觉空间处理的大脑回路。有视力的人和先天性盲人进行了触觉时间顺序判断(TOJ)任务,双手要么不交叉,要么交叉于身体中线之上。行为数据证实,双手交叉对有视力的人的TOJ判断有不利影响,但对早期失明的人没有影响。至关重要的是,与不交叉姿势相比,只有有视力的组中,交叉手姿势在前顶叶网络中引发了增强的活动。然而,心理生理交互分析显示,先天性盲人在交叉与不交叉手姿势下,顶叶和额叶区域之间的功能连接增强。我们的结果表明,视觉体验为空间中触觉位置的神经实现搭建了框架。在日常生活中,我们为了针对与身体接触的刺激进行动作规划,会在外部空间中无缝定位触觉。因此,为了实现高效的感觉运动整合,大脑必须计算我们四肢在外部世界中的当前位置。在本研究中,我们证明早期视觉剥夺会改变背侧顶叶-额叶网络中的大脑活动,该网络通常支持有视力的人的触觉定位。因此,我们的结果最终证明了发育性视觉在搭建触觉感知神经实现框架中所起的内在作用。