Josephides Christos, Swain Peter S
SynthSys-Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK.
Nat Commun. 2017 Sep 25;8(1):685. doi: 10.1038/s41467-017-00828-6.
Competition for substrates is a ubiquitous selection pressure faced by microbes, yet intracellular trade-offs can prevent cells from metabolizing every type of available substrate. Adaptive evolution is constrained by these trade-offs, but their consequences for the repeatability and predictability of evolution are unclear. Here we develop an eco-evolutionary model with a metabolic trade-off to generate networks of mutational paths in microbial communities and show that these networks have descriptive and predictive information about the evolution of microbial communities. We find that long-term outcomes, including community collapse, diversity, and cycling, have characteristic evolutionary dynamics that determine the entropy, or repeatability, of mutational paths. Although reliable prediction of evolutionary outcomes from environmental conditions is difficult, graph-theoretic properties of the mutational networks enable accurate prediction even from incomplete observations. In conclusion, we present a novel methodology for analyzing adaptive evolution and report that the dynamics of adaptation are a key variable for predictive success.The structure and dynamics of microbial communities reflect trade-offs in the ability to use different resources. Here, Josephides and Swain incorporate metabolic trade-offs into an eco-evolutionary model to predict networks of mutational paths and the evolutionary outcomes for microbial communities.
对底物的竞争是微生物面临的一种普遍存在的选择压力,然而细胞内的权衡取舍可能会阻止细胞代谢每一种可用的底物。适应性进化受到这些权衡取舍的限制,但其对进化的可重复性和可预测性的影响尚不清楚。在这里,我们开发了一个具有代谢权衡的生态进化模型,以生成微生物群落中突变路径的网络,并表明这些网络具有关于微生物群落进化的描述性和预测性信息。我们发现,包括群落崩溃、多样性和循环在内的长期结果具有特征性的进化动态,这些动态决定了突变路径的熵或可重复性。尽管从环境条件可靠预测进化结果很困难,但突变网络的图论性质即使从不完整的观察中也能实现准确预测。总之,我们提出了一种分析适应性进化的新方法,并报告说适应动态是预测成功的关键变量。微生物群落的结构和动态反映了在利用不同资源能力方面的权衡。在这里,约瑟菲德斯和斯温将代谢权衡纳入生态进化模型,以预测突变路径网络和微生物群落的进化结果。