Szejka Agnes, Drossel Barbara
Institut für Festkörperphysik, TU Darmstadt, Hochschulstrasse 6, 64289 Darmstadt, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Feb;81(2 Pt 1):021908. doi: 10.1103/PhysRevE.81.021908. Epub 2010 Feb 8.
We study the evolution of Boolean networks as model systems for gene regulation. Inspired by biological networks, we select simultaneously for robust attractors and for the ability to respond to external inputs by changing the attractor. Mutations change the connections between the nodes and the update functions. In order to investigate the influence of the type of update functions, we perform our simulations with canalizing as well as with threshold functions. We compare the properties of the fitness landscapes that result for different versions of the selection criterion and the update functions. We find that for all studied cases the fitness landscape has a plateau with maximum fitness resulting in the fact that structurally very different networks are able to fulfill the same task and are connected by neutral paths in network ("genotype") space. We find furthermore a connection between the attractor length and the mutational robustness, and an extremely long memory of the initial evolutionary stage.
我们研究布尔网络的演化,将其作为基因调控的模型系统。受生物网络启发,我们同时选择稳健的吸引子以及通过改变吸引子来响应外部输入的能力。突变会改变节点之间的连接和更新函数。为了研究更新函数类型的影响,我们使用渠道化函数和阈值函数进行模拟。我们比较了不同版本的选择标准和更新函数所产生的适应度景观的特性。我们发现,对于所有研究案例,适应度景观都有一个具有最大适应度的平台期,这导致在网络(“基因型”)空间中,结构上非常不同的网络能够完成相同的任务并通过中性路径相连。我们还发现吸引子长度与突变稳健性之间存在联系,以及对初始进化阶段的极长记忆。