Suppr超能文献

整群随机试验的空间分析:分析方法的系统评价

Spatial analysis of cluster randomised trials: a systematic review of analysis methods.

作者信息

Jarvis Christopher, Di Tanna Gian Luca, Lewis Daniel, Alexander Neal, Edmunds W John

机构信息

London School of Hygiene and Tropical Medicine, London, UK.

MRC London Hub for Trials Methodology Research, London, UK.

出版信息

Emerg Themes Epidemiol. 2017 Sep 21;14:12. doi: 10.1186/s12982-017-0066-2. eCollection 2017.

Abstract

BACKGROUND

Cluster randomised trials (CRTs) often use geographical areas as the unit of randomisation, however explicit consideration of the location and spatial distribution of observations is rare. In many trials, the location of participants will have little importance, however in some, especially against infectious diseases, spillover effects due to participants being located close together may affect trial results. This review aims to identify spatial analysis methods used in CRTs and improve understanding of the impact of spatial effects on trial results.

METHODS

A systematic review of CRTs containing spatial methods, defined as a method that accounts for the structure, location, or relative distances between observations. We searched three sources: Ovid/Medline, Pubmed, and Web of Science databases. Spatial methods were categorised and details of the impact of spatial effects on trial results recorded.

RESULTS

We identified ten papers which met the inclusion criteria, comprising thirteen trials. We found that existing approaches fell into two categories; spatial variables and spatial modelling. The spatial variable approach was most common and involved standard statistical analysis of distance measurements. Spatial modelling is a more sophisticated approach which incorporates the spatial structure of the data within a random effects model. Studies tended to demonstrate the importance of accounting for location and distribution of observations in estimating unbiased effects.

CONCLUSIONS

There have been a few attempts to control and estimate spatial effects within the context of human CRTs, but our overall understanding is limited. Although spatial effects may bias trial results, their consideration was usually a supplementary, rather than primary analysis. Further work is required to evaluate and develop the spatial methodologies relevant to a range of CRTs.

摘要

背景

整群随机试验(CRTs)通常将地理区域作为随机化单位,然而,对观察值的位置和空间分布进行明确考虑的情况却很少见。在许多试验中,参与者的位置可能并不重要,但在一些试验中,尤其是针对传染病的试验,由于参与者位置相近而产生的溢出效应可能会影响试验结果。本综述旨在识别整群随机试验中使用的空间分析方法,并增进对空间效应如何影响试验结果的理解。

方法

对包含空间方法的整群随机试验进行系统综述,空间方法定义为一种考虑观察值之间的结构、位置或相对距离的方法。我们检索了三个来源:Ovid/Medline、PubMed和Web of Science数据库。对空间方法进行分类,并记录空间效应如何影响试验结果的详细信息。

结果

我们识别出10篇符合纳入标准的论文,其中包含13项试验。我们发现现有方法分为两类:空间变量法和空间建模法。空间变量法最为常见,涉及对距离测量值进行标准统计分析。空间建模是一种更复杂的方法,它将数据的空间结构纳入随机效应模型。研究往往表明,在估计无偏效应时,考虑观察值的位置和分布很重要。

结论

在人类整群随机试验的背景下,已经有一些控制和估计空间效应的尝试,但我们的总体认识仍然有限。虽然空间效应可能会使试验结果产生偏差,但对它们的考虑通常是作为补充分析,而非主要分析。需要进一步开展工作,以评估和开发与一系列整群随机试验相关的空间方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验