Suppr超能文献

用于二项式数据的上市后药品和疫苗安全性监测的I型错误概率消耗

Type I error probability spending for post-market drug and vaccine safety surveillance with binomial data.

作者信息

Silva Ivair R

机构信息

Department of Statistics, Federal University of Ouro Preto, Campus Morro do Cruzeiro, CEP 35400 000 Ouro Preto, MG, Brazil.

出版信息

Stat Med. 2018 Jan 15;37(1):107-118. doi: 10.1002/sim.7504. Epub 2017 Sep 25.

Abstract

Type I error probability spending functions are commonly used for designing sequential analysis of binomial data in clinical trials, but it is also quickly emerging for near-continuous sequential analysis of post-market drug and vaccine safety surveillance. It is well known that, for clinical trials, when the null hypothesis is not rejected, it is still important to minimize the sample size. Unlike in post-market drug and vaccine safety surveillance, that is not important. In post-market safety surveillance, specially when the surveillance involves identification of potential signals, the meaningful statistical performance measure to be minimized is the expected sample size when the null hypothesis is rejected. The present paper shows that, instead of the convex Type I error spending shape conventionally used in clinical trials, a concave shape is more indicated for post-market drug and vaccine safety surveillance. This is shown for both, continuous and group sequential analysis.

摘要

I型错误概率消耗函数通常用于设计临床试验中二元数据的序贯分析,但它也迅速出现在上市后药品和疫苗安全性监测的近连续序贯分析中。众所周知,对于临床试验,当原假设未被拒绝时,最小化样本量仍然很重要。与上市后药品和疫苗安全性监测不同,这一点并不重要。在上市后安全性监测中,特别是当监测涉及潜在信号的识别时,要最小化的有意义的统计性能指标是原假设被拒绝时的预期样本量。本文表明,对于上市后药品和疫苗安全性监测,与临床试验中传统使用的凸形I型错误消耗形状不同,凹形更适用。连续分析和组序贯分析均表明了这一点。

相似文献

1
Type I error probability spending for post-market drug and vaccine safety surveillance with binomial data.
Stat Med. 2018 Jan 15;37(1):107-118. doi: 10.1002/sim.7504. Epub 2017 Sep 25.
2
Continuous versus group sequential analysis for post-market drug and vaccine safety surveillance.
Biometrics. 2015 Sep;71(3):851-8. doi: 10.1111/biom.12324. Epub 2015 May 22.
3
Continuous sequential boundaries for vaccine safety surveillance.
Stat Med. 2014 Aug 30;33(19):3387-97. doi: 10.1002/sim.6161. Epub 2014 Apr 1.
4
Composite sequential Monte Carlo test for post-market vaccine safety surveillance.
Stat Med. 2016 Apr 30;35(9):1441-53. doi: 10.1002/sim.6805. Epub 2015 Nov 11.
6
A conditional maximized sequential probability ratio test for pharmacovigilance.
Stat Med. 2010 Jan 30;29(2):284-95. doi: 10.1002/sim.3780.
7
A seasonality-adjusted sequential test for vaccine safety surveillance.
Biometrics. 2023 Dec;79(4):3533-3548. doi: 10.1111/biom.13829. Epub 2023 Jan 30.
8
A Bayesian approach to sequential analysis in post-licensure vaccine safety surveillance.
Pharm Stat. 2020 May;19(3):291-302. doi: 10.1002/pst.1991. Epub 2019 Dec 22.
9
Implementing near real-time vaccine safety surveillance using the Clinical Practice Research Datalink (CPRD).
Vaccine. 2017 Dec 14;35(49 Pt B):6885-6892. doi: 10.1016/j.vaccine.2017.09.022. Epub 2017 Oct 19.
10
Logistic Regression Likelihood Ratio Test Analysis for Detecting Signals of Adverse Events in Post-market Safety Surveillance.
J Biopharm Stat. 2017;27(6):990-1008. doi: 10.1080/10543406.2017.1295250. Epub 2017 Mar 27.

引用本文的文献

2
Exact conditional maximized sequential probability ratio test adjusted for covariates.
Seq Anal. 2019;38(1):115-133. doi: 10.1080/07474946.2019.1574446. Epub 2019 May 13.
3
Exact sequential analysis for multiple weighted binomial end points.
Stat Med. 2020 Feb 10;39(3):340-351. doi: 10.1002/sim.8405. Epub 2019 Nov 25.
4
Alpha spending for historical versus surveillance Poisson data with CMaxSPRT.
Stat Med. 2019 May 30;38(12):2126-2138. doi: 10.1002/sim.8097. Epub 2019 Jan 28.
5
Conditional power as an aid in making interim decisions in observational studies.
Eur J Epidemiol. 2018 Sep;33(9):777-784. doi: 10.1007/s10654-018-0413-9. Epub 2018 May 28.

本文引用的文献

2
3
Continuous versus group sequential analysis for post-market drug and vaccine safety surveillance.
Biometrics. 2015 Sep;71(3):851-8. doi: 10.1111/biom.12324. Epub 2015 May 22.
4
Continuous sequential boundaries for vaccine safety surveillance.
Stat Med. 2014 Aug 30;33(19):3387-97. doi: 10.1002/sim.6161. Epub 2014 Apr 1.
5
Active surveillance for adverse events: the experience of the Vaccine Safety Datalink project.
Pediatrics. 2011 May;127 Suppl 1:S54-64. doi: 10.1542/peds.2010-1722I. Epub 2011 Apr 18.
6
A conditional maximized sequential probability ratio test for pharmacovigilance.
Stat Med. 2010 Jan 30;29(2):284-95. doi: 10.1002/sim.3780.
7
Real-time vaccine safety surveillance for the early detection of adverse events.
Med Care. 2007 Oct;45(10 Supl 2):S89-95. doi: 10.1097/MLR.0b013e3180616c0a.
8
Active surveillance of vaccine safety: a system to detect early signs of adverse events.
Epidemiology. 2005 May;16(3):336-41. doi: 10.1097/01.ede.0000155506.05636.a4.
9
Group sequential designs using a family of type I error probability spending functions.
Stat Med. 1990 Dec;9(12):1439-45. doi: 10.1002/sim.4780091207.
10
A multiple testing procedure for clinical trials.
Biometrics. 1979 Sep;35(3):549-56.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验