Institut für Molekulare Physiologie, Pflanzenbiochemie, Johannes Gutenberg-Universität, Johannes-von-Müller-Weg 6, 55128, Mainz, Germany.
Plant J. 2017 Dec;92(5):879-891. doi: 10.1111/tpj.13725. Epub 2017 Nov 1.
The epoxy-xanthophylls antheraxanthin and violaxanthin are key precursors of light-harvesting carotenoids and participate in the photoprotective xanthophyll cycle. Thus, the invention of zeaxanthin epoxidase (ZEP) catalyzing their formation from zeaxanthin has been a fundamental step in the evolution of photosynthetic eukaryotes. ZEP genes have only been found in Viridiplantae and chromalveolate algae with secondary plastids of red algal ancestry, suggesting that ZEP evolved in the Viridiplantae and spread to chromalveolates by lateral gene transfer. By searching publicly available sequence data from 11 red algae covering all currently recognized red algal classes we identified ZEP candidates in three species. Phylogenetic analyses showed that the red algal ZEP is most closely related to ZEP proteins from photosynthetic chromalveolates possessing secondary plastids of red algal origin. Its enzymatic activity was assessed by high performance liquid chromatography (HPLC) analyses of red algal pigment extracts and by cloning and functional expression of the ZEP gene from Madagascaria erythrocladioides in leaves of the ZEP-deficient aba2 mutant of Nicotiana plumbaginifolia. Unlike other ZEP enzymes examined so far, the red algal ZEP introduces only a single epoxy group into zeaxanthin, yielding antheraxanthin instead of violaxanthin. The results indicate that ZEP evolved before the split of Rhodophyta and Viridiplantae and that chromalveolates acquired ZEP from the red algal endosymbiont and not by lateral gene transfer. Moreover, the red algal ZEP enables engineering of transgenic plants incorporating antheraxanthin instead of violaxanthin in their photosynthetic machinery.
环氧类叶黄素玉米黄质和紫黄质是光捕获类胡萝卜素的关键前体,参与光保护的叶黄素循环。因此,催化其从玉米黄质形成的叶黄素环氧化酶 (ZEP) 的发明是光合真核生物进化的一个基本步骤。ZEP 基因仅在绿藻门和具红藻祖先质体的有色鞭毛藻类中被发现,这表明 ZEP 是在绿藻门进化而来,并通过横向基因转移传播到有色鞭毛藻类。通过搜索来自 11 种红藻的公开可用序列数据,这些红藻涵盖了所有目前公认的红藻纲,我们在 3 种红藻中鉴定出 ZEP 候选基因。系统发育分析表明,红藻 ZEP 与具有红藻质体起源的质体的光合有色鞭毛藻类的 ZEP 蛋白最为密切相关。通过对红藻色素提取物的高效液相色谱 (HPLC) 分析以及对来自马达加斯加红藻的 ZEP 基因的克隆和功能表达,评估了其酶活性,该基因在拟南芥 aba2 突变体的叶片中进行了表达,该突变体缺乏 ZEP 酶。与迄今为止研究过的其他 ZEP 酶不同,红藻 ZEP 仅在玉米黄质中引入一个环氧基团,生成玉米黄质而不是紫黄质。结果表明,ZEP 在红藻和绿藻门分裂之前就已经进化,并且有色鞭毛藻类是从红藻内共生体获得 ZEP 的,而不是通过横向基因转移。此外,红藻 ZEP 使工程转基因植物能够在其光合作用机制中掺入玉米黄质而不是紫黄质。