Suppr超能文献

沿澳大利亚大陆气候梯度的叶片 bulk-leaf C 分辨力、叶片性状和水分利用效率-性状关系的变化。

Variation in bulk-leaf C discrimination, leaf traits and water-use efficiency-trait relationships along a continental-scale climate gradient in Australia.

机构信息

Terrestrial Ecohydrology Research Group, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia.

ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, Australia.

出版信息

Glob Chang Biol. 2018 Mar;24(3):1186-1200. doi: 10.1111/gcb.13911. Epub 2017 Oct 24.

Abstract

Large spatial and temporal gradients in rainfall and temperature occur across Australia. This heterogeneity drives ecological differentiation in vegetation structure and ecophysiology. We examined multiple leaf-scale traits, including foliar C isotope discrimination (Δ C), rates of photosynthesis and foliar N concentration and their relationships with multiple climate variables. Fifty-five species across 27 families were examined across eight sites spanning contrasting biomes. Key questions addressed include: (i) Does Δ C and intrinsic water-use efficiency (WUE ) vary with climate at a continental scale? (ii) What are the seasonal and spatial patterns in Δ C/WUE across biomes and species? (iii) To what extent does Δ C reflect variation in leaf structural, functional and nutrient traits across climate gradients? and (iv) Does the relative importance of assimilation and stomatal conductance in driving variation in Δ C differ across seasons? We found that MAP, temperature seasonality, isothermality and annual temperature range exerted independent effects on foliar Δ C/WUE . Temperature-related variables exerted larger effects than rainfall-related variables. The relative importance of photosynthesis and stomatal conductance (g ) in determining Δ C differed across seasons: Δ C was more strongly regulated by g during the dry-season and by photosynthetic capacity during the wet-season. Δ C was most strongly correlated, inversely, with leaf mass area ratio among all leaf attributes considered. Leaf N was significantly and positively correlated with MAP during dry- and wet-seasons and with moisture index (MI) during the wet-season but was not correlated with Δ C. Leaf P showed significant positive relationship with MAP and Δ C only during the dry-season. For all leaf nutrient-related traits, the relationships obtained for Δ C with MAP or MI indicated that Δ C at the species level reliably reflects the water status at the site level. Temperature and water availability, not foliar nutrient content, are the principal factors influencing Δ C across Australia.

摘要

澳大利亚的降雨和温度存在较大的时空梯度。这种异质性导致植被结构和生理生态的生态分化。我们研究了多个叶片尺度的特征,包括叶片 C 同位素分馏(Δ C)、光合作用速率和叶片 N 浓度及其与多个气候变量的关系。在跨越对比鲜明的生物群落的八个地点,研究了 27 个科的 55 个物种。要解决的关键问题包括:(i)在大陆尺度上,Δ C 和内在水分利用效率(WUE)是否随气候而变化?(ii)在生物群落和物种中,Δ C/WUE 的季节性和空间模式是什么?(iii)Δ C 在多大程度上反映了叶片结构、功能和养分特征在气候梯度上的变化?(iv)在不同季节,同化和气孔导度在驱动 Δ C 变化方面的相对重要性是否不同?我们发现,平均降水量(MAP)、温度季节性、均温性和年温度范围对叶片 Δ C/WUE 有独立的影响。与降水相关的变量比与温度相关的变量产生更大的影响。在不同季节,光合作用和气孔导度(g)在决定 Δ C 方面的相对重要性不同:在旱季,g 对 Δ C 的调节作用更强,而在雨季,光合作用能力对 Δ C 的调节作用更强。在所有考虑的叶片属性中,Δ C 与叶质量面积比的相关性最强,呈反比。叶片 N 与旱季和雨季的 MAP 以及雨季的水分指数(MI)显著正相关,但与 Δ C 无关。叶片 P 仅在旱季与 MAP 和 Δ C 呈显著正相关。对于所有叶片营养相关性状,MAP 或 MI 与 Δ C 的关系表明,在物种水平上的 Δ C 可靠地反映了在站点水平上的水分状况。温度和水分供应,而不是叶片养分含量,是影响澳大利亚各地 Δ C 的主要因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验