Suppr超能文献

全球树木内在水分利用效率因大气 CO 增加而提高,并受气候和植物功能类型调节。

Global tree intrinsic water use efficiency is enhanced by increased atmospheric CO and modulated by climate and plant functional types.

机构信息

Department of Biology, West Virginia University, Morgantown, WV 26506

Department of Biology, West Virginia University, Morgantown, WV 26506.

出版信息

Proc Natl Acad Sci U S A. 2021 Feb 16;118(7). doi: 10.1073/pnas.2014286118.

Abstract

We conducted a meta-analysis of carbon and oxygen isotopes from tree ring chronologies representing 34 species across 10 biomes to better understand the environmental drivers and physiological mechanisms leading to historical changes in tree intrinsic water use efficiency (iWUE), or the ratio of net photosynthesis () to stomatal conductance (), over the last century. We show a ∼40% increase in tree iWUE globally since 1901, coinciding with a ∼34% increase in atmospheric CO (C), although mean iWUE, and the rates of increase, varied across biomes and leaf and wood functional types. While C was a dominant environmental driver of iWUE, the effects of increasing C were modulated either positively or negatively by climate, including vapor pressure deficit (VPD), temperature, and precipitation, and by leaf and wood functional types. A dual carbon-oxygen isotope approach revealed that increases in dominated the observed increased iWUE in ∼83% of examined cases, supporting recent reports of global increases in , whereas reductions in occurred in the remaining ∼17%. This meta-analysis provides a strong process-based framework for predicting changes in tree carbon gain and water loss across biomes and across wood and leaf functional types, and the interactions between C and other environmental factors have important implications for the coupled carbon-hydrologic cycles under future climate. Our results furthermore challenge the idea of widespread reductions in as the major driver of increasing tree iWUE and will better inform Earth system models regarding the role of trees in the global carbon and water cycles.

摘要

我们对来自 34 个物种的 10 个生物群落的树木年轮年代序列中的碳和氧同位素进行了荟萃分析,以便更好地了解导致过去一个世纪树木内在水分利用效率(iWUE)——即净光合速率()与气孔导度()的比值——发生历史变化的环境驱动因素和生理机制。我们发现,自 1901 年以来,全球树木 iWUE 增加了约 40%,同期大气 CO(C)增加了约 34%,尽管平均 iWUE 以及增加的速度在生物群落和叶片及木质功能类型之间存在差异。虽然 C 是 iWUE 的主要环境驱动因素,但 C 的影响受到气候(包括蒸气压亏缺(VPD)、温度和降水)以及叶片和木质功能类型的正向或负向调节。碳-氧双同位素方法表明,在约 83%的受检案例中,增加的主导了观测到的 iWUE 增加,这支持了最近关于全球增加的报告,而在其余约 17%的案例中,减少了。这项荟萃分析为预测 across biomes 和 across wood 和 leaf functional types 中树木碳增益和水分损失的变化提供了一个强有力的基于过程的框架,并且 C 和其他环境因素之间的相互作用对未来气候下的碳-水文耦合循环具有重要意义。我们的结果进一步挑战了广泛减少作为增加树木 iWUE 的主要驱动因素的观点,并将更好地为地球系统模型提供有关树木在全球碳和水循环中的作用的信息。

相似文献

引用本文的文献

4
Water-use efficiency driven by water savings.节水驱动的用水效率
Nat Ecol Evol. 2025 Jul 11. doi: 10.1038/s41559-025-02793-6.

本文引用的文献

3
Plant responses to rising vapor pressure deficit.植物对不断上升的蒸汽压亏缺的响应。
New Phytol. 2020 Jun;226(6):1550-1566. doi: 10.1111/nph.16485. Epub 2020 Mar 20.
7
Robust Response of Terrestrial Plants to Rising CO.陆地植物对不断升高的二氧化碳的稳健响应。
Trends Plant Sci. 2019 Jul;24(7):578-586. doi: 10.1016/j.tplants.2019.04.003. Epub 2019 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验