Suppr超能文献

爱德华兹 - 安德森模型和长程伊辛自旋玻璃中界面的分形维数:确定不同理论描述的适用性

Fractal Dimension of Interfaces in Edwards-Anderson and Long-range Ising Spin Glasses: Determining the Applicability of Different Theoretical Descriptions.

作者信息

Wang Wenlong, Moore M A, Katzgraber Helmut G

机构信息

Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843-4242, USA.

School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom.

出版信息

Phys Rev Lett. 2017 Sep 8;119(10):100602. doi: 10.1103/PhysRevLett.119.100602. Epub 2017 Sep 7.

Abstract

The fractal dimension of excitations in glassy systems gives information on the critical dimension at which the droplet picture of spin glasses changes to a description based on replica symmetry breaking where the interfaces are space filling. Here, the fractal dimension of domain-wall interfaces is studied using the strong-disorder renormalization group method pioneered by Monthus [Fractals 23, 1550042 (2015)FRACEG0218-348X10.1142/S0218348X15500425] both for the Edwards-Anderson spin-glass model in up to 8 space dimensions, as well as for the one-dimensional long-ranged Ising spin-glass with power-law interactions. Analyzing the fractal dimension of domain walls, we find that replica symmetry is broken in high-enough space dimensions. Because our results for high-dimensional hypercubic lattices are limited by their small size, we have also studied the behavior of the one-dimensional long-range Ising spin-glass with power-law interactions. For the regime where the power of the decay of the spin-spin interactions with their separation distance corresponds to 6 and higher effective space dimensions, we find again the broken replica symmetry result of space filling excitations. This is not the case for smaller effective space dimensions. These results show that the dimensionality of the spin glass determines which theoretical description is appropriate. Our results will also be of relevance to the Gardner transition of structural glasses.

摘要

玻璃态系统中激发的分形维数提供了关于临界维数的信息,在该临界维数下,自旋玻璃的液滴图像转变为基于复制对称性破缺的描述,其中界面是空间填充的。在此,我们使用由蒙图斯开创的强无序重整化群方法[《分形》23, 1550042 (2015)FRACEG0218 - 348X10.1142/S0218348X15500425]研究畴壁界面的分形维数,该方法适用于高达8维空间的爱德华兹 - 安德森自旋玻璃模型,以及具有幂律相互作用的一维长程伊辛自旋玻璃。通过分析畴壁的分形维数,我们发现在足够高的空间维数下复制对称性被打破。由于我们对高维超立方晶格的结果受其小尺寸限制,我们还研究了具有幂律相互作用的一维长程伊辛自旋玻璃的行为。对于自旋 - 自旋相互作用随其分离距离衰减的幂次对应于6及更高有效空间维数的情况,我们再次发现空间填充激发的复制对称性破缺结果。对于较小的有效空间维数则并非如此。这些结果表明自旋玻璃的维数决定了哪种理论描述是合适的。我们的结果也将与结构玻璃的加德纳转变相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验