Darbois Texier Baptiste, Ibarra Alejandro, Melo Francisco
Departamento de Física Universidad de Santiago de Chile, Avenida Ecuador 3493, 9170124 Estación Central, Santiago, Chile.
Phys Rev Lett. 2017 Aug 11;119(6):068003. doi: 10.1103/PhysRevLett.119.068003. Epub 2017 Aug 10.
The physical mechanisms that bring about the propulsion of a rotating helix in a granular medium are considered. A propulsive motion along the axis of the rotating helix is induced by both symmetry breaking due to the helical shape, and the anisotropic frictional forces undergone by all segments of the helix in the medium. Helix dynamics is studied as a function of helix rotation speed and its geometrical parameters. The effect of the granular pressure and the applied external load were also investigated. A theoretical model is developed based on the anisotropic frictional force experienced by a slender body moving in a granular material, to account for the translation speed of the helix. A good agreement with experimental data is obtained, which allows for predicting the helix design to propel optimally within granular media. These results pave the way for the development of an efficient sand robot operating according to this mode of locomotion.
本文考虑了在颗粒介质中使旋转螺旋体产生推进力的物理机制。由于螺旋形状导致的对称性破缺以及螺旋体在介质中的所有部分所经历的各向异性摩擦力,都会引起沿旋转螺旋体轴线的推进运动。研究了螺旋体动力学与螺旋体转速及其几何参数的关系。还研究了颗粒压力和外加外部载荷的影响。基于细长物体在颗粒材料中所经历的各向异性摩擦力,建立了一个理论模型,以解释螺旋体的平移速度。该模型与实验数据取得了良好的一致性,这使得我们能够预测在颗粒介质中实现最佳推进的螺旋体设计。这些结果为开发一种按照这种运动模式运行的高效沙地机器人铺平了道路。