Cao Ting, Zhao Fangzhou, Louie Steven G
Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA and Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA.
Phys Rev Lett. 2017 Aug 18;119(7):076401. doi: 10.1103/PhysRevLett.119.076401. Epub 2017 Aug 16.
We show that semiconducting graphene nanoribbons (GNRs) of different width, edge, and end termination (synthesizable from molecular precursors with atomic precision) belong to different electronic topological classes. The topological phase of GNRs is protected by spatial symmetries and dictated by the terminating unit cell. We have derived explicit formulas for their topological invariants and shown that localized junction states developed between two GNRs of distinct topology may be tuned by lateral junction geometry. The topology of a GNR can be further modified by dopants, such as a periodic array of boron atoms. In a superlattice consisting of segments of doped and pristine GNRs, the junction states are stable spin centers, forming a Heisenberg antiferromagnetic spin 1/2 chain with tunable exchange interaction. The discoveries here not only are of scientific interest for studies of quasi-one-dimensional systems, but also open a new path for design principles of future GNR-based devices through their topological characters.
我们表明,不同宽度、边缘和末端终止的半导体石墨烯纳米带(GNRs,可由具有原子精度的分子前驱体合成)属于不同的电子拓扑类别。GNRs的拓扑相由空间对称性保护,并由终止晶胞决定。我们推导了它们拓扑不变量的显式公式,并表明在具有不同拓扑结构的两个GNRs之间形成的局域结态可以通过横向结几何结构进行调节。GNR的拓扑结构可以通过掺杂剂进一步修改,例如硼原子的周期性阵列。在由掺杂和原始GNR段组成的超晶格中,结态是稳定的自旋中心,形成具有可调交换相互作用的海森堡反铁磁自旋1/2链。这里的发现不仅对准一维系统的研究具有科学意义,而且通过其拓扑特性为未来基于GNR的器件的设计原理开辟了一条新途径。