Sikora Grzegorz, Teuerle Marek, Wyłomańska Agnieszka, Grebenkov Denis
Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wroclaw University of Science and Technology, Wybrzeże Wyspianskiego 27, 50-370 Wroclaw, Poland.
Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS-École Polytechnique, Université Paris-Saclay, 91128 Palaiseau, France.
Phys Rev E. 2017 Aug;96(2-1):022132. doi: 10.1103/PhysRevE.96.022132. Epub 2017 Aug 14.
The most common way of estimating the anomalous scaling exponent from single-particle trajectories consists of a linear fit of the dependence of the time-averaged mean-square displacement on the lag time at the log-log scale. We investigate the statistical properties of this estimator in the case of fractional Brownian motion (FBM). We determine the mean value, the variance, and the distribution of the estimator. Our theoretical results are confirmed by Monte Carlo simulations. In the limit of long trajectories, the estimator is shown to be asymptotically unbiased, consistent, and with vanishing variance. These properties ensure an accurate estimation of the scaling exponent even from a single (long enough) trajectory. As a consequence, we prove that the usual way to estimate the diffusion exponent of FBM is correct from the statistical point of view. Moreover, the knowledge of the estimator distribution is the first step toward new statistical tests of FBM and toward a more reliable interpretation of the experimental histograms of scaling exponents in microbiology.
从单粒子轨迹估计反常标度指数最常见的方法是在对数-对数尺度下对时间平均均方位移与滞后时间的依赖关系进行线性拟合。我们研究了分数布朗运动(FBM)情况下该估计器的统计特性。我们确定了估计器的均值、方差和分布。我们的理论结果通过蒙特卡罗模拟得到了证实。在长轨迹的极限情况下,该估计器被证明是渐近无偏、一致且方差趋于零的。这些特性确保即使从单个(足够长)轨迹也能准确估计标度指数。因此,我们证明了从统计角度来看,估计FBM扩散指数的常用方法是正确的。此外,估计器分布的知识是迈向FBM新统计检验以及对微生物学中标度指数实验直方图进行更可靠解释的第一步。