Suppr超能文献

相变的无监督学习:从主成分分析到变分自编码器。

Unsupervised learning of phase transitions: From principal component analysis to variational autoencoders.

作者信息

Wetzel Sebastian J

机构信息

Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany.

出版信息

Phys Rev E. 2017 Aug;96(2-1):022140. doi: 10.1103/PhysRevE.96.022140. Epub 2017 Aug 18.

Abstract

We examine unsupervised machine learning techniques to learn features that best describe configurations of the two-dimensional Ising model and the three-dimensional XY model. The methods range from principal component analysis over manifold and clustering methods to artificial neural-network-based variational autoencoders. They are applied to Monte Carlo-sampled configurations and have, a priori, no knowledge about the Hamiltonian or the order parameter. We find that the most promising algorithms are principal component analysis and variational autoencoders. Their predicted latent parameters correspond to the known order parameters. The latent representations of the models in question are clustered, which makes it possible to identify phases without prior knowledge of their existence. Furthermore, we find that the reconstruction loss function can be used as a universal identifier for phase transitions.

摘要

我们研究无监督机器学习技术,以学习最能描述二维伊辛模型和三维XY模型构型的特征。这些方法涵盖从主成分分析到流形和聚类方法,再到基于人工神经网络的变分自编码器。它们应用于蒙特卡罗采样构型,并且先验地对哈密顿量或序参量一无所知。我们发现最有前景的算法是主成分分析和变分自编码器。它们预测的潜在参数与已知的序参量相对应。所讨论模型的潜在表示是聚类的,这使得在不知道相的存在的先验知识的情况下识别相成为可能。此外,我们发现重构损失函数可用作相变的通用标识符。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验