Institute of Medical Informatics, University of Lübeck, Lübeck, Germany.
Int J Comput Assist Radiol Surg. 2019 Mar;14(3):451-461. doi: 10.1007/s11548-018-1898-0. Epub 2018 Dec 12.
Pathology detection in medical image data is an important but a rather complicated task. In particular, the big variability of the pathologies is a challenge to automatic detection methods and even to machine learning methods. Supervised algorithms would usually learn the appearance of a single pathological structure based on a large annotated dataset. As such data is not usually available, especially in large amounts, in this work we pursue a different unsupervised approach.
Our method is based on learning the entire variability of healthy data and detect pathologies by their differences to the learned norm. For this purpose, we use conditional variational autoencoders which learn the reconstruction and encoding distribution of healthy images and also have the ability to integrate certain prior knowledge about the data (condition).
Our experiments on different 2D and 3D datasets show that the approach is suitable for the detection of pathologies and deliver reasonable Dice coefficients and AUCs. Also this method can estimate missing correspondences in pathological images and thus can be used as a pre-step to a registration method. Our experiments show improving registration results on pathological data when using this approach.
Overall the presented approach is suitable for a rough pathology detection in medical images and can be successfully used as a preprocessing step to other image processing methods.
医学图像数据中的病理学检测是一项重要但相当复杂的任务。特别是病理学的巨大可变性对自动检测方法甚至机器学习方法都是一个挑战。监督算法通常会根据大量标注数据集学习单一病理结构的外观。由于这种数据通常不可用,尤其是在大量情况下,在这项工作中,我们采用了一种不同的无监督方法。
我们的方法基于学习健康数据的整体可变性,并通过与学习到的规范的差异来检测病理学。为此,我们使用条件变分自动编码器,它学习健康图像的重建和编码分布,并且还具有集成关于数据的某些先验知识(条件)的能力。
我们在不同的 2D 和 3D 数据集上的实验表明,该方法适用于病理学的检测,并提供了合理的骰子系数和 AUC。此外,该方法可以估计病理图像中缺失的对应关系,因此可以用作配准方法的预处理步骤。我们的实验表明,当使用这种方法时,病理数据的配准结果得到了改善。
总的来说,所提出的方法适用于医学图像中的粗略病理学检测,并可以成功地用作其他图像处理方法的预处理步骤。