Suppr超能文献

基于机器学习的癌症治疗药物载体纳米粒子设计疗效预测方法。

Predicting efficacy of drug-carrier nanoparticle designs for cancer treatment: a machine learning-based solution.

机构信息

Faculty of Science and Engineering, Åbo Akademi University, 20500, Turku, Finland.

出版信息

Sci Rep. 2023 Jan 11;13(1):547. doi: 10.1038/s41598-023-27729-7.

Abstract

Molecular Dynamic (MD) simulations are very effective in the discovery of nanomedicines for treating cancer, but these are computationally expensive and time-consuming. Existing studies integrating machine learning (ML) into MD simulation to enhance the process and enable efficient analysis cannot provide direct insights without the complete simulation. In this study, we present an ML-based approach for predicting the solvent accessible surface area (SASA) of a nanoparticle (NP), denoting its efficacy, from a fraction of the MD simulations data. The proposed framework uses a time series model for simulating the MD, resulting in an intermediate state, and a second model to calculate the SASA in that state. Empirically, the solution can predict the SASA value 260 timesteps ahead 7.5 times faster with a very low average error of 1956.93. We also introduce the use of an explainability technique to validate the predictions. This work can reduce the computational expense of both processing and data size greatly while providing reliable solutions for the nanomedicine design process.

摘要

分子动力学 (MD) 模拟在发现治疗癌症的纳米药物方面非常有效,但这些模拟计算成本高、时间长。现有的研究将机器学习 (ML) 集成到 MD 模拟中,以增强该过程并实现有效的分析,但如果没有完整的模拟,这些研究无法提供直接的见解。在这项研究中,我们提出了一种基于机器学习的方法,可从 MD 模拟数据的一部分中预测纳米颗粒 (NP) 的溶剂可及表面积 (SASA),这表示其功效。所提出的框架使用时间序列模型来模拟 MD,从而得到中间状态,并使用第二个模型来计算该状态下的 SASA。从经验上看,该解决方案可以以非常低的平均误差 1956.93 提前 260 个时间步预测 SASA 值,速度快 7.5 倍。我们还引入了使用可解释性技术来验证预测的方法。这项工作可以大大降低处理和数据大小的计算成本,同时为纳米药物设计过程提供可靠的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe72/9834306/176a7cdf5677/41598_2023_27729_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验