Pradhan Priodyuti, Yadav Alok, Dwivedi Sanjiv K, Jalan Sarika
Complex Systems Lab, Discipline of Physics, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India.
Centre for Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India.
Phys Rev E. 2017 Aug;96(2-1):022312. doi: 10.1103/PhysRevE.96.022312. Epub 2017 Aug 14.
Network science is increasingly being developed to get new insights about behavior and properties of complex systems represented in terms of nodes and interactions. One useful approach is investigating the localization properties of eigenvectors having diverse applications including disease-spreading phenomena in underlying networks. In this work, we evolve an initial random network with an edge rewiring optimization technique considering the inverse participation ratio as a fitness function. The evolution process yields a network having a localized principal eigenvector. We analyze various properties of the optimized networks and those obtained at the intermediate stage. Our investigations reveal the existence of a few special structural features of such optimized networks, for instance, the presence of a set of edges which are necessary for localization, and rewiring only one of them leads to complete delocalization of the principal eigenvector. Furthermore, we report that principal eigenvector localization is not a consequence of changes in a single network property and, preferably, requires the collective influence of various distinct structural as well as spectral features.
网络科学正日益发展,以获取有关以节点和相互作用表示的复杂系统行为和特性的新见解。一种有用的方法是研究具有多种应用的特征向量的定位特性,包括基础网络中的疾病传播现象。在这项工作中,我们使用一种边重连优化技术来演化初始随机网络,该技术将逆参与率作为适应度函数。演化过程产生一个具有局部化主特征向量的网络。我们分析了优化网络以及在中间阶段获得的网络的各种特性。我们的研究揭示了此类优化网络存在一些特殊的结构特征,例如,存在一组对于定位必不可少的边,并且仅重新连接其中一条边就会导致主特征向量完全离域化。此外,我们报告主特征向量定位不是单个网络属性变化的结果,并且最好需要各种不同的结构和光谱特征的集体影响。