Suppr超能文献

18F-FDG PET 图像生物标志物可改善晚期放射性口干的预测。

F-FDG PET image biomarkers improve prediction of late radiation-induced xerostomia.

机构信息

Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, The Netherlands.

Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, The Netherlands.

出版信息

Radiother Oncol. 2018 Jan;126(1):89-95. doi: 10.1016/j.radonc.2017.08.024. Epub 2017 Sep 23.

Abstract

BACKGROUND AND PURPOSE

Current prediction of radiation-induced xerostomia 12months after radiotherapy (Xer) is based on mean parotid gland dose and baseline xerostomia (Xer) scores. The hypothesis of this study was that prediction of Xer is improved with patient-specific characteristics extracted from F-FDG PET images, quantified in PET image biomarkers (PET-IBMs).

PATIENTS AND METHODS

Intensity and textural PET-IBMs of the parotid gland were collected from pre-treatment F-FDG PET images of 161 head and neck cancer patients. Patient-rated toxicity was prospectively collected. Multivariable logistic regression models resulting from step-wise forward selection and Lasso regularisation were internally validated by bootstrapping. The reference model with parotid gland dose and Xer was compared with the resulting PET-IBM models.

RESULTS

High values of the intensity PET-IBM (90th percentile (P90)) and textural PET-IBM (Long Run High Grey-level Emphasis 3 (LRHG3E)) were significantly associated with lower risk of Xer. Both PET-IBMs significantly added in the prediction of Xer to the reference model. The AUC increased from 0.73 (0.65-0.81) (reference model) to 0.77 (0.70-0.84) (P90) and 0.77 (0.69-0.84) (LRHG3E).

CONCLUSION

Prediction of Xer was significantly improved with pre-treatment PET-IBMs, indicating that high metabolic parotid gland activity is associated with lower risk of developing late xerostomia. This study highlights the potential of incorporating patient-specific PET-derived functional characteristics into NTCP model development.

摘要

背景与目的

目前,放疗后 12 个月的放射性口干症(Xer)的预测是基于腮腺平均剂量和基线口干症(Xer)评分。本研究的假设是,通过从 F-FDG PET 图像中提取的患者特异性特征,并对其进行 PET 图像生物标志物(PET-IBMs)进行量化,可以改善 Xer 的预测。

患者和方法

从 161 例头颈部癌症患者的 F-FDG PET 图像中采集腮腺的强度和纹理 PET-IBMs。前瞻性收集患者的毒性评分。逐步向前选择和套索正则化的多变量逻辑回归模型通过自举进行内部验证。将包含腮腺剂量和 Xer 的参考模型与得到的 PET-IBM 模型进行比较。

结果

高强度 PET-IBM(第 90 百分位数(P90))和纹理 PET-IBM(长运行高灰度强调 3(LRHG3E))值较高与 Xer 风险较低显著相关。这两种 PET-IBM 都显著提高了参考模型预测 Xer 的能力。AUC 从 0.73(0.65-0.81)(参考模型)增加到 0.77(0.70-0.84)(P90)和 0.77(0.69-0.84)(LRHG3E)。

结论

治疗前的 PET-IBMs 显著改善了 Xer 的预测,表明高代谢性腮腺活性与发生迟发性口干症的风险较低相关。本研究强调了将患者特异性的 PET 衍生功能特征纳入 NTCP 模型开发中的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验